Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Bingxin Ke, ETH Zurich. All rights reserved. | |
# Last modified: 2024-11-28 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# --------------------------------------------------------------------------------- | |
# If you find this code useful, we kindly ask you to cite our paper in your work. | |
# Please find bibtex at: https://github.com/prs-eth/RollingDepth#-citation | |
# More information about the method can be found at https://rollingdepth.github.io | |
# --------------------------------------------------------------------------------- | |
import logging | |
from os import PathLike | |
from typing import Optional, Tuple, List | |
import av | |
import einops | |
import numpy as np | |
import torch | |
from torchvision.transforms import InterpolationMode | |
from torchvision.transforms.functional import resize | |
from tqdm import tqdm | |
def resize_max_res( | |
img: torch.Tensor, | |
max_edge_resolution: int, | |
resample_method: InterpolationMode = InterpolationMode.BILINEAR, | |
) -> torch.Tensor: | |
""" | |
Resize image to limit maximum edge length while keeping aspect ratio. | |
Args: | |
img (`torch.Tensor`): | |
Image tensor to be resized. Expected shape: [B, C, H, W] | |
max_edge_resolution (`int`): | |
Maximum edge length (pixel). | |
resample_method (`PIL.Image.Resampling`): | |
Resampling method used to resize images. | |
Returns: | |
`torch.Tensor`: Resized image. | |
""" | |
assert 4 == img.dim(), f"Invalid input shape {img.shape}" | |
original_height, original_width = img.shape[-2:] | |
downscale_factor = min( | |
max_edge_resolution / original_width, max_edge_resolution / original_height | |
) | |
new_width = int(original_width * downscale_factor) | |
new_height = int(original_height * downscale_factor) | |
resized_img = resize(img, [new_height, new_width], resample_method, antialias=True) | |
return resized_img | |
def load_video_frames( | |
input_path: PathLike, | |
start_frame: int = 0, | |
frame_count: int = 0, | |
processing_res: int = 0, | |
resample_method: str = "BILINEAR", | |
verbose: bool = False, | |
) -> Tuple[torch.Tensor, torch.Size]: | |
assert start_frame >= 0 | |
# Open the video file | |
container = av.open(input_path) | |
stream = container.streams.video[0] | |
# Calculate end frame | |
end_before = start_frame + frame_count if frame_count > 0 else np.inf | |
# Set stream to decode only frames we need | |
stream.thread_type = "AUTO" # Enable multithreading | |
# Iterate through frames | |
if verbose: | |
frame_iterable = tqdm( | |
container.decode(stream), # type: ignore | |
desc="Loading frames", | |
leave=False, | |
) | |
else: | |
frame_iterable = container.decode(stream) # type: ignore | |
frame_ls = [] | |
original_res: torch.Size = None # type: ignore | |
for i, frame in enumerate(frame_iterable): | |
if i >= start_frame and i < end_before: | |
# Convert frame to numpy array and then to torch tensor | |
frame_array = frame.to_ndarray(format="rgb24") | |
frame = torch.from_numpy(frame_array.copy()).float() | |
# original resolution before resizing | |
if original_res is None: | |
original_res = frame.shape[:2] | |
frame = einops.rearrange(frame, "h w c -> 1 c h w") | |
# Resize if requested | |
if processing_res > 0: | |
frame = resize_max_res( | |
frame, | |
max_edge_resolution=processing_res, | |
resample_method=InterpolationMode.__getitem__(resample_method), | |
) | |
# Normalize to to [-1, 1] | |
frame_norm = (frame / 255.0) * 2.0 - 1.0 | |
frame_ls.append(frame_norm) | |
if i >= end_before: | |
break | |
container.close() | |
if 0 == len(frame_ls): | |
raise RuntimeError(f"No frame is loaded from {input_path}") | |
frames = torch.cat(frame_ls, dim=0) # [N C H W] | |
return frames, original_res | |
def write_video_from_numpy( | |
frames: np.ndarray, # shape [n h w 3] | |
output_path: PathLike, | |
fps: int = 30, | |
codec: Optional[str] = None, # Let PyAV choose default codec | |
crf: int = 23, | |
preset: str = "medium", | |
verbose: bool = False, | |
) -> None: | |
if len(frames.shape) != 4 or frames.shape[-1] != 3: | |
raise ValueError(f"Expected shape [n, height, width, 3], got {frames.shape}") | |
if frames.dtype != np.uint8: | |
raise ValueError(f"Expected dtype uint8, got {frames.dtype}") | |
n_frames, height, width, _ = frames.shape | |
# Try to determine codec from output format if not specified | |
if codec is None: | |
codecs_to_try = ["libx264", "h264", "mpeg4", "mjpeg"] | |
else: | |
codecs_to_try = [codec] | |
# Try available codecs | |
for try_codec in codecs_to_try: | |
try: | |
container = av.open(output_path, mode="w") | |
stream = container.add_stream(try_codec, rate=fps) | |
if verbose: | |
logging.info(f"Using codec: {try_codec}") | |
break | |
except av.codec.codec.UnknownCodecError: # type: ignore | |
if try_codec == codecs_to_try[-1]: # Last codec in list | |
raise ValueError( | |
f"No working codec found. Tried: {codecs_to_try}. " | |
"Please install ffmpeg with necessary codecs." | |
) | |
continue | |
stream.width = width # type: ignore | |
stream.height = height # type: ignore | |
stream.pix_fmt = "yuv420p" # type: ignore | |
# Only set these options for x264-compatible codecs | |
if try_codec in ["libx264", "h264"]: # type: ignore | |
stream.options = {"crf": str(crf), "preset": preset} # type: ignore | |
# Create a single VideoFrame object and reuse it | |
video_frame = av.VideoFrame(width, height, "rgb24") | |
frames_iterable = range(n_frames) | |
if verbose: | |
frames_iterable = tqdm(frames_iterable, desc="Writing video", total=n_frames) | |
try: | |
for frame_idx in frames_iterable: | |
# Get view of current frame | |
current_frame = frames[frame_idx] | |
# Update frame data in-place | |
video_frame.to_ndarray()[:] = current_frame | |
packet = stream.encode(video_frame) # type: ignore | |
container.mux(packet) # type: ignore | |
# Flush the stream | |
packet = stream.encode(None) # type: ignore | |
container.mux(packet) # type: ignore | |
finally: | |
container.close() # type: ignore | |
def get_video_fps(video_path: PathLike) -> float: | |
# Open the video file | |
container = av.open(video_path) | |
# Get the video stream | |
video_stream = container.streams.video[0] | |
# Calculate FPS from the stream's time base and average frame rate | |
fps = float(video_stream.average_rate) # type: ignore | |
# Close the container | |
container.close() | |
return fps | |
def concatenate_videos_horizontally_torch( | |
video1: torch.Tensor, | |
video2: torch.Tensor, | |
gap: int = 0, | |
gap_color: Optional[List[int]] = None, | |
): | |
# Convert to torch tensors if they aren't already | |
if isinstance(video1, np.ndarray): | |
video1 = torch.from_numpy(video1) # [N, 3, H, W] | |
if isinstance(video2, np.ndarray): | |
video2 = torch.from_numpy(video2) # [N, 3, H, W] | |
# Get target size | |
N, C, H1, W1 = video1.shape | |
# Resize video2 to match height of video1 | |
video2_resized = resize(video2, [H1, W1], antialias=True) | |
if gap > 0: | |
# Create gap tensor | |
if gap_color is None: | |
gap_color = [0, 0, 0] # Default to black | |
gap_tensor = torch.ones( | |
(N, C, H1, gap), | |
dtype=video1.dtype, | |
device=video1.device, | |
) * torch.tensor(gap_color).int().view(3, 1, 1) | |
# Concatenate with gap | |
concatenated = torch.cat([video1, gap_tensor, video2_resized], dim=3) | |
else: | |
# Concatenate without gap | |
concatenated = torch.cat([video1, video2_resized], dim=3) | |
# Concatenate along width dimension | |
concatenated = torch.cat([video1, video2_resized], dim=3) | |
return concatenated | |