Spaces:
Running
Running
File size: 2,605 Bytes
2217335 f5848c0 2217335 c774338 2217335 c774338 2217335 c8bd9ca 2217335 15c94ad 47523db 2217335 47523db c8bd9ca 2217335 c774338 843fee2 084159d c774338 2217335 c8bd9ca 2217335 c774338 60311f6 c774338 2217335 c774338 2217335 c774338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import logging
import os
import requests
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
class RAG:
NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta."
def __init__(self, hf_token, embeddings_model, model_name):
self.model_name = model_name
self.hf_token = hf_token
# load vectore store
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
self.vectore_store = FAISS.load_local("vectorestore", embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True)
logging.info("RAG loaded!")
def get_context(self, instruction, number_of_contexts=4):
documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts)
return documentos
def predict(self, instruction, context, model_parameters):
api_key = os.getenv("HF_TOKEN")
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n "
#prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>"
payload = {
"inputs": query,
"parameters": model_parameters
}
response = requests.post(self.model_name, headers=headers, json=payload)
return response.json()[0]["generated_text"].split("###")[-1][8:-1]
def beautiful_context(self, docs):
text_context = ""
full_context = ""
for doc in docs:
text_context += doc[0].page_content
full_context += doc[0].page_content + "\n"
full_context += doc[0].metadata["Títol de la norma"] + "\n\n"
full_context += doc[0].metadata["url"] + "\n\n"
return text_context, full_context
def get_response(self, prompt: str, model_parameters: dict) -> str:
docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])
text_context, full_context = self.beautiful_context(docs)
del model_parameters["NUM_CHUNKS"]
response = self.predict(prompt, text_context, model_parameters)
if not response:
return self.NO_ANSWER_MESSAGE
return response, full_context |