import h5py import gradio as gr from tensorflow.keras.utils import img_to_array, load_img from keras.models import load_model import numpy as np from deep_translator import GoogleTranslator # Load the pre-trained model from the local path model_path = 'tomato.h5' # Check if the model is loading correctly try: with h5py.File(model_path, 'r+') as f: if 'groups' in f.attrs['model_config']: model_config_string = f.attrs['model_config'] model_config_string = model_config_string.replace('"groups": 1,', '') model_config_string = model_config_string.replace('"groups": 1}', '}') f.attrs['model_config'] = model_config_string.encode('utf-8') model = load_model(model_path) print("Model loaded successfully.") except Exception as e: print(f"Error loading model: {e}") def predict_disease(image_file, model, all_labels, target_language): try: # Load and preprocess the image print(f"Received image file: {image_file}") img = load_img(image_file, target_size=(224, 224)) # Ensure image size matches model input img_array = img_to_array(img) img_array = np.expand_dims(img_array, axis=0) # Add batch dimension img_array = img_array / 255.0 # Normalize the image # Predict the class predictions = model.predict(img_array) # Validate predictions confidence_threshold = 0.7 # Require at least 98% confidence confidence_scores = predictions[0] max_confidence = np.max(confidence_scores) if max_confidence < confidence_threshold: print(f"Prediction confidence ({max_confidence:.2f}) is too low.") return f"""

Please upload a clearer image of the plant.

""" predicted_class = np.argmax(predictions[0]) # Get the predicted class label predicted_label = all_labels[predicted_class] # Translate the predicted label to the selected language translated_label = GoogleTranslator(source='en', target=target_language).translate(predicted_label) # Provide pesticide information based on the predicted label if predicted_label == 'Tomato Yellow Leaf Curl Virus': pesticide_info = """

Tomato Yellow Leaf Curl Virus

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Target Spot': pesticide_info = """

Tomato Target Spot

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Spider mites': pesticide_info = """

Tomato Spider mites

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Septoria leaf spot': pesticide_info = """

Tomato Septoria leaf spot

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Mosaic virus': pesticide_info = """

Tomato Mosaic virus

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Leaf Mold': pesticide_info = """

Tomato Leaf Mold

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Late blight': pesticide_info = """

Tomato Late blight

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Early blight': pesticide_info = """

Tomato Early blight

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Bacterial spot': pesticide_info = """

Tomato Bacterial spot

PESTICIDES TO BE USED:



* * * IMPORTANT NOTE * * *


Be sure to follow local regulations and guidelines for application

""" elif predicted_label == 'Tomato Healthy': pesticide_info = """

Tomato Healthy

No pesticides needed""" else: pesticide_info = 'No pesticide information available.' print(f"Pesticide Info (Before Translation): {pesticide_info}") # Translate the pesticide information to the selected language translated_pesticide_info = GoogleTranslator(source='en', target=target_language).translate(pesticide_info) print(f"Translated Pesticide Info: {translated_pesticide_info}") # Return translated label and pesticide information with associated styling predicted_label_html = f""" {translated_pesticide_info} """ return predicted_label_html except Exception as e: print(f"Error during prediction: {e}") return f"

Error: {e}

" # List of class labels all_labels = [ 'Tomato Yellow Leaf Curl Virus', 'Tomato Target Spot', 'Tomato Spider mites', 'Tomato Septoria leaf spot', 'Tomato Mosaic virus', 'Tomato Leaf Mold', 'Tomato Late blight', 'Tomato Healthy', 'Tomato Early blight', 'Tomato Bacterial spot' ] # Language codes and their full names (display full names in dropdown) language_choices = { 'hi': 'Hindi', 'te': 'Telugu', 'en': 'English', 'ml': 'Malayalam', 'ta': 'Tamil', 'bn': 'Bengali', 'gu': 'Gujarati', 'kn': 'Kannada', 'mr': 'Marathi' } # Mapping full names back to their corresponding language code full_to_code = {value: key for key, value in language_choices.items()} # Create a dropdown of full language names, using the full name in the UI languages = list(language_choices.values()) # List of full language names # Define the Gradio interface def gradio_predict(image_file, target_language): # Map full name back to language code for translation language_code = full_to_code.get(target_language, 'en') return predict_disease(image_file, model, all_labels, language_code) # Create the Gradio interface gr_interface = gr.Interface( fn=gradio_predict, inputs=[ gr.Image(type="filepath"), # Image input for disease prediction gr.Dropdown(label="Select language", choices=languages, value='English') # Language selection dropdown with full names ], outputs="html", # Output will be in HTML (translated text) title="Tomato Disease Predictor", description="Upload an image of a plant to predict the disease and get the translated label and pesticide information in the selected language." ) # Launch the Gradio app gr_interface.launch()