Spaces:
Sleeping
Sleeping
File size: 12,222 Bytes
b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b 3dd28eb 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 7d418d9 296f593 7d418d9 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 1b95f2b b91b489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import h5py
import gradio as gr
from tensorflow.keras.utils import img_to_array, load_img
from keras.models import load_model
import numpy as np
from deep_translator import GoogleTranslator
# Load the pre-trained model from the local path
model_path = 'tomato.h5'
# Check if the model is loading correctly
try:
with h5py.File(model_path, 'r+') as f:
if 'groups' in f.attrs['model_config']:
model_config_string = f.attrs['model_config']
model_config_string = model_config_string.replace('"groups": 1,', '')
model_config_string = model_config_string.replace('"groups": 1}', '}')
f.attrs['model_config'] = model_config_string.encode('utf-8')
model = load_model(model_path)
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
def predict_disease(image_file, model, all_labels, target_language):
try:
# Load and preprocess the image
print(f"Received image file: {image_file}")
img = load_img(image_file, target_size=(224, 224)) # Ensure image size matches model input
img_array = img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
img_array = img_array / 255.0 # Normalize the image
# Predict the class
predictions = model.predict(img_array)
# Validate predictions
confidence_threshold = 0.7 # Require at least 98% confidence
confidence_scores = predictions[0]
max_confidence = np.max(confidence_scores)
if max_confidence < confidence_threshold:
print(f"Prediction confidence ({max_confidence:.2f}) is too low.")
return f"""
<h3 style="color:red; text-align:center;">
Please upload a clearer image of the plant.
</h3>
"""
predicted_class = np.argmax(predictions[0])
# Get the predicted class label
predicted_label = all_labels[predicted_class]
# Translate the predicted label to the selected language
translated_label = GoogleTranslator(source='en', target=target_language).translate(predicted_label)
# Provide pesticide information based on the predicted label
if predicted_label == 'Tomato Yellow Leaf Curl Virus':
pesticide_info = """
<h2><center><b>Tomato Yellow Leaf Curl Virus</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. imidacloprid</li>
<li>2. thiamethoxam</li>
<li>3. Spinosad</li>
<li>4. Acetamiprid</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Target Spot':
pesticide_info = """
<h2><center><b>Tomato Target Spot</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Azoxystrobin</li>
<li>2. Boscalid</li>
<li>3. Mancozeb</li>
<li>4. Chlorothalonil</li>
<li>5. Propiconazole</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Spider mites':
pesticide_info = """
<h2><center><b>Tomato Spider mites</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Abamectin</li>
<li>2. Spiromesifen</li>
<li>3. Miticides</li>
<li>4. insecticidal soap</li>
<li>5. Neem oil</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Septoria leaf spot':
pesticide_info = """
<h2><center><b>Tomato Septoria leaf spot</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Azoxystrobin</li>
<li>2. Boscalid</li>
<li>3. Mancozeb</li>
<li>4. Chlorothalonil</li>
<li>5. Propiconazole</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Mosaic virus':
pesticide_info = """
<h2><center><b>Tomato Mosaic virus</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Imidacloprid</li>
<li>2. Thiamethoxam</li>
<li>3. Acetamiprid</li>
<li>4. Dinotefuran</li>
<li>5. Pyrethrin</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Leaf Mold':
pesticide_info = """
<h2><center><b>Tomato Leaf Mold</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Azoxystrobin</li>
<li>2. Boscalid</li>
<li>3. Mancozeb</li>
<li>4. Chlorothalonil</li>
<li>5. Propiconazole</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Late blight':
pesticide_info = """
<h2><center><b>Tomato Late blight</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. metalaxl</li>
<li>2. Chlorothalonil</li>
<li>3. Mancozeb</li>
<li>4. Copper oxychloride</li>
<li>5. Azoxystrobin</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Early blight':
pesticide_info = """
<h2><center><b>Tomato Early blight</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Azoxystrobin</li>
<li>2. Boscalid</li>
<li>3. Mancozeb</li>
<li>4. Chlorothalonil</li>
<li>5. Propiconazole</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Bacterial spot':
pesticide_info = """
<h2><center><b>Tomato Bacterial spot</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Copper oxychloride</li>
<li>2. Streptomycin</li>
<li>3. tetracycline</li>
<li>4. Oxytetracline(Terramycin)</li>
<li>5. Insecticidal soap</li>
<li>6. Horticultural oil</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Tomato Healthy':
pesticide_info = """<h2><center><b>Tomato Healthy</b></center></h2>
<h5> No pesticides needed"""
else:
pesticide_info = 'No pesticide information available.'
print(f"Pesticide Info (Before Translation): {pesticide_info}")
# Translate the pesticide information to the selected language
translated_pesticide_info = GoogleTranslator(source='en', target=target_language).translate(pesticide_info)
print(f"Translated Pesticide Info: {translated_pesticide_info}")
# Return translated label and pesticide information with associated styling
predicted_label_html = f"""
{translated_pesticide_info}
"""
return predicted_label_html
except Exception as e:
print(f"Error during prediction: {e}")
return f"<h3>Error: {e}</h3>"
# List of class labels
all_labels = [
'Tomato Yellow Leaf Curl Virus',
'Tomato Target Spot',
'Tomato Spider mites',
'Tomato Septoria leaf spot',
'Tomato Mosaic virus',
'Tomato Leaf Mold',
'Tomato Late blight',
'Tomato Healthy',
'Tomato Early blight',
'Tomato Bacterial spot'
]
# Language codes and their full names (display full names in dropdown)
language_choices = {
'hi': 'Hindi',
'te': 'Telugu',
'en': 'English',
'ml': 'Malayalam',
'ta': 'Tamil',
'bn': 'Bengali',
'gu': 'Gujarati',
'kn': 'Kannada',
'mr': 'Marathi'
}
# Mapping full names back to their corresponding language code
full_to_code = {value: key for key, value in language_choices.items()}
# Create a dropdown of full language names, using the full name in the UI
languages = list(language_choices.values()) # List of full language names
# Define the Gradio interface
def gradio_predict(image_file, target_language):
# Map full name back to language code for translation
language_code = full_to_code.get(target_language, 'en')
return predict_disease(image_file, model, all_labels, language_code)
# Create the Gradio interface
gr_interface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(type="filepath"), # Image input for disease prediction
gr.Dropdown(label="Select language", choices=languages, value='English') # Language selection dropdown with full names
],
outputs="html", # Output will be in HTML (translated text)
title="Tomato Disease Predictor",
description="Upload an image of a plant to predict the disease and get the translated label and pesticide information in the selected language."
)
# Launch the Gradio app
gr_interface.launch()
|