File size: 12,222 Bytes
b91b489
1b95f2b
b91b489
1b95f2b
 
b91b489
1b95f2b
 
3dd28eb
1b95f2b
b91b489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b95f2b
 
b91b489
 
1b95f2b
 
 
 
 
b91b489
7d418d9
296f593
7d418d9
 
 
 
 
 
 
 
 
 
 
1b95f2b
b91b489
1b95f2b
 
 
b91b489
 
 
 
 
 
 
 
 
 
1b95f2b
 
 
 
 
b91b489
 
1b95f2b
b91b489
 
 
 
 
 
1b95f2b
 
 
 
 
b91b489
 
 
1b95f2b
b91b489
 
 
 
 
 
1b95f2b
 
 
b91b489
1b95f2b
b91b489
 
 
1b95f2b
b91b489
 
 
 
 
 
1b95f2b
 
 
 
 
b91b489
 
 
1b95f2b
b91b489
 
 
 
 
 
1b95f2b
 
 
 
 
b91b489
 
 
 
 
 
 
 
 
 
1b95f2b
 
 
 
 
b91b489
 
 
 
 
 
 
 
 
 
1b95f2b
 
 
 
 
b91b489
 
 
 
 
 
 
 
 
 
1b95f2b
 
 
 
 
b91b489
 
 
1b95f2b
b91b489
 
 
 
 
 
1b95f2b
 
 
 
 
 
b91b489
 
 
 
 
 
 
 
1b95f2b
b91b489
1b95f2b
b91b489
1b95f2b
b91b489
 
 
 
 
 
 
 
 
 
1b95f2b
 
b91b489
 
1b95f2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91b489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b95f2b
b91b489
 
 
 
1b95f2b
b91b489
1b95f2b
b91b489
 
 
 
 
 
1b95f2b
b91b489
1b95f2b
 
 
b91b489
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import h5py
import gradio as gr
from tensorflow.keras.utils import img_to_array, load_img
from keras.models import load_model
import numpy as np
from deep_translator import GoogleTranslator

# Load the pre-trained model from the local path
model_path = 'tomato.h5'

# Check if the model is loading correctly
try:
    with h5py.File(model_path, 'r+') as f:
        if 'groups' in f.attrs['model_config']:  
            model_config_string = f.attrs['model_config'] 
            model_config_string = model_config_string.replace('"groups": 1,', '')
            model_config_string = model_config_string.replace('"groups": 1}', '}')
            f.attrs['model_config'] = model_config_string.encode('utf-8')

    model = load_model(model_path)
    print("Model loaded successfully.")
except Exception as e:
    print(f"Error loading model: {e}")

def predict_disease(image_file, model, all_labels, target_language):
    try:
        # Load and preprocess the image
        print(f"Received image file: {image_file}")
        img = load_img(image_file, target_size=(224, 224))  # Ensure image size matches model input
        img_array = img_to_array(img)
        img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension
        img_array = img_array / 255.0  # Normalize the image

        # Predict the class
        predictions = model.predict(img_array)
        # Validate predictions
        confidence_threshold = 0.7  # Require at least 98% confidence
        confidence_scores = predictions[0]
        max_confidence = np.max(confidence_scores)

        if max_confidence < confidence_threshold:
          print(f"Prediction confidence ({max_confidence:.2f}) is too low.")
          return f"""
              <h3 style="color:red; text-align:center;">
               
             Please upload a clearer image of the plant.
              </h3>
               """
        predicted_class = np.argmax(predictions[0])
        
        # Get the predicted class label
        predicted_label = all_labels[predicted_class]
        
        # Translate the predicted label to the selected language
        translated_label = GoogleTranslator(source='en', target=target_language).translate(predicted_label)
        
        # Provide pesticide information based on the predicted label
        if predicted_label == 'Tomato Yellow Leaf Curl Virus':
            pesticide_info = """
                <h2><center><b>Tomato Yellow Leaf Curl Virus</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. imidacloprid</li>
                    <li>2. thiamethoxam</li>
                    <li>3. Spinosad</li>
                    <li>4. Acetamiprid</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """
        elif predicted_label == 'Tomato Target Spot':
            pesticide_info = """
                <h2><center><b>Tomato Target Spot</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. Azoxystrobin</li>
                    <li>2. Boscalid</li>
                    <li>3. Mancozeb</li>
                    <li>4. Chlorothalonil</li>
                    <li>5. Propiconazole</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """
        elif predicted_label == 'Tomato Spider mites':
            pesticide_info = """
                <h2><center><b>Tomato Spider mites</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. Abamectin</li>
                    <li>2. Spiromesifen</li>
                    <li>3. Miticides</li>
                    <li>4. insecticidal soap</li>                
                    <li>5. Neem oil</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """
        elif predicted_label == 'Tomato Septoria leaf spot':
            pesticide_info = """
                <h2><center><b>Tomato Septoria leaf spot</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. Azoxystrobin</li>
                    <li>2. Boscalid</li>
                    <li>3. Mancozeb</li>
                    <li>4. Chlorothalonil</li>
                    <li>5. Propiconazole</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """
        elif predicted_label == 'Tomato Mosaic virus':
            pesticide_info = """
                <h2><center><b>Tomato Mosaic virus</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. Imidacloprid</li>
                    <li>2. Thiamethoxam</li>
                    <li>3. Acetamiprid</li>
                    <li>4. Dinotefuran</li>
                    <li>5. Pyrethrin</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """ 
        elif predicted_label == 'Tomato Leaf Mold':
            pesticide_info = """
                <h2><center><b>Tomato Leaf Mold</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. Azoxystrobin</li>
                    <li>2. Boscalid</li>
                    <li>3. Mancozeb</li>
                    <li>4. Chlorothalonil</li>
                    <li>5. Propiconazole</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """ 
        elif predicted_label == 'Tomato Late blight':
            pesticide_info = """
                <h2><center><b>Tomato Late blight</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. metalaxl</li>
                    <li>2. Chlorothalonil</li>
                    <li>3. Mancozeb</li>
                    <li>4. Copper oxychloride</li>
                    <li>5. Azoxystrobin</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """ 
        elif predicted_label == 'Tomato Early blight':
            pesticide_info = """
                <h2><center><b>Tomato Early blight</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. Azoxystrobin</li>
                    <li>2. Boscalid</li>
                    <li>3. Mancozeb</li>
                    <li>4. Chlorothalonil</li>
                    <li>5. Propiconazole</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """
        elif predicted_label == 'Tomato Bacterial spot':
            pesticide_info = """
                <h2><center><b>Tomato Bacterial spot</b></center></h2>
                <h4>PESTICIDES TO BE USED:</h4><br>
                
                <ul style="font-size:17px;margin-left:40px;">
                    <li>1. Copper oxychloride</li>
                    <li>2. Streptomycin</li>
                    <li>3. tetracycline</li>
                    <li>4. Oxytetracline(Terramycin)</li>
                    <li>5. Insecticidal soap</li>
                    <li>6. Horticultural oil</li>
                </ul><br>
                <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
                <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
            """ 
        elif predicted_label == 'Tomato Healthy':
            pesticide_info = """<h2><center><b>Tomato Healthy</b></center></h2>
            <h5> No pesticides needed"""
        
        else:
            pesticide_info = 'No pesticide information available.'

        print(f"Pesticide Info (Before Translation): {pesticide_info}")

        # Translate the pesticide information to the selected language
        translated_pesticide_info = GoogleTranslator(source='en', target=target_language).translate(pesticide_info)
        print(f"Translated Pesticide Info: {translated_pesticide_info}")

        # Return translated label and pesticide information with associated styling
        predicted_label_html = f"""
        
        {translated_pesticide_info}
        """
        return predicted_label_html

    except Exception as e:
        print(f"Error during prediction: {e}")
        return f"<h3>Error: {e}</h3>"

# List of class labels
all_labels = [
    'Tomato Yellow Leaf Curl Virus',
    'Tomato Target Spot',
    'Tomato Spider mites',
    'Tomato Septoria leaf spot',
    'Tomato Mosaic virus',
    'Tomato Leaf Mold',
    'Tomato Late blight',
    'Tomato Healthy',
    'Tomato Early blight',
    'Tomato Bacterial spot'
]

# Language codes and their full names (display full names in dropdown)
language_choices = {
    'hi': 'Hindi',
    'te': 'Telugu',
    'en': 'English',
    'ml': 'Malayalam',
    'ta': 'Tamil',
    'bn': 'Bengali',
    'gu': 'Gujarati',
    'kn': 'Kannada',
    'mr': 'Marathi'
}

# Mapping full names back to their corresponding language code
full_to_code = {value: key for key, value in language_choices.items()}

# Create a dropdown of full language names, using the full name in the UI
languages = list(language_choices.values())  # List of full language names

# Define the Gradio interface
def gradio_predict(image_file, target_language):
    # Map full name back to language code for translation
    language_code = full_to_code.get(target_language, 'en')
    return predict_disease(image_file, model, all_labels, language_code)

# Create the Gradio interface
gr_interface = gr.Interface(
    fn=gradio_predict,
    inputs=[
        gr.Image(type="filepath"),  # Image input for disease prediction
        gr.Dropdown(label="Select language", choices=languages, value='English')  # Language selection dropdown with full names
    ],
    outputs="html",  # Output will be in HTML (translated text)
    title="Tomato Disease Predictor",
    description="Upload an image of a plant to predict the disease and get the translated label and pesticide information in the selected language."
)

# Launch the Gradio app
gr_interface.launch()