Spaces:
Sleeping
Sleeping
File size: 10,174 Bytes
73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b 8715a1f 73fce5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import h5py
import gradio as gr
from tensorflow.keras.utils import img_to_array, load_img
from keras.models import load_model
import numpy as np
from deep_translator import GoogleTranslator
# Load the pre-trained model from the local path
model_path = 'Mango.h5'
# Check if the model is loading correctly
try:
with h5py.File(model_path, 'r+') as f:
if 'groups' in f.attrs['model_config']:
model_config_string = f.attrs['model_config']
model_config_string = model_config_string.replace('"groups": 1,', '')
model_config_string = model_config_string.replace('"groups": 1}', '}')
f.attrs['model_config'] = model_config_string.encode('utf-8')
model = load_model(model_path)
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
def predict_disease(image_file, model, all_labels, target_language):
try:
# Load and preprocess the image
print(f"Received image file: {image_file}")
img = load_img(image_file, target_size=(224, 224)) # Ensure image size matches model input
img_array = img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
img_array = img_array / 255.0 # Normalize the image
# Predict the class
predictions = model.predict(img_array)
predicted_class = np.argmax(predictions[0])
# Get the predicted class label
predicted_label = all_labels[predicted_class]
# Translate the predicted label to the selected language
translated_label = GoogleTranslator(source='en', target=target_language).translate(predicted_label)
# Provide pesticide information based on the predicted label
if predicted_label == 'Mango Anthracrose':
pesticide_info = """
<h2><center><b>Mango Anthracrose</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Mancozeb</li>
<li>2. Azoxystrobin</li>
<li>3. Carbendazim</li>
<li>4. Propiconazole</li>
<li>5. Thiophanate-methyl</li>
<li>6. Copper Sulfate</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Mango Bacterial Canker':
pesticide_info = """<h2><center><b>Mango Bacterial Canker</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Copper Hydroxide</li>
<li>2. Copper Oxychloride</li>
<li>3. Streptomycin</li>
<li>4. oxytetracycline</li>
<li>5. Neem oil</li>
<li>6. Garlic oil</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Mango Cutting Weevil':
pesticide_info = """<h2><center><b>Mango Cutting Weevil</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Imidacloprid</li>
<li>2. Thiamethoxam</li>
<li>3. Chlorpyrifos</li>
<li>4. Lambda-cyhalothrin</li>
<li>5. Fipronil</li>
<li>6. Neem oil</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Mango Die Back':
pesticide_info = """<h2><center><b>Mango Die Back</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Carbendazim</li>
<li>2. Mancozeb</li>
<li>3. Azoxystrobin</li>
<li>4. Triazole</li>
<li>5. Potassium bicarbonate</li>
<li>6. Sodium bicarbonate</li>
</ul>
<br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Mango Gall Midge':
pesticide_info = """<h2><center><b>Mango Gall Midge</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Imidacloprid</li>
<li>2. Thiamethoxam</li>
<li>3. Chlorpyrifos</li>
<li>4. Lambda-cyhalothrin</li>
<li>5. Spinosad</li>
<li>6. Pyrethrin</li>
</ul>
<br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Mango Healthy':
pesticide_info = 'No pesticides needed'
elif predicted_label == 'Mango Powdery Mildew':
pesticide_info = """<h2><center><b>Mango Powdery Mildew</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Sulfur</li>
<li>2. Bicarbonates</li>
<li>3. Myclobutanil</li>
<li>4. Triadimefon</li>
<li>5. Propiconazole</li>
<li>6. Azoxystrobin</li>
</ul>
<br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Mango Sooty Mould':
pesticide_info = """<h2><center><b>Mango Sooty Mould</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Imidacloprid (Neonicotinoid)</li>
<li>2. Thiamethoxam (Neonicotinoid)</li>
<li>3. Bifenthrin (Pyrethroid)</li>
<li>4. Lambda-cyhalothrin (Pyrethroid)</li>
<li>5. Insecticidal soap</li>
<li>6. Horticultural oil</li>
</ul>
<br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>"""
else:
pesticide_info = 'No pesticide information available.'
print(f"Pesticide Info (Before Translation): {pesticide_info}")
# Translate the pesticide information to the selected language
translated_pesticide_info = GoogleTranslator(source='en', target=target_language).translate(pesticide_info)
print(f"Translated Pesticide Info: {translated_pesticide_info}")
# Return translated label and pesticide information with associated styling
predicted_label_html = f"""
{translated_pesticide_info}
"""
return predicted_label_html
except Exception as e:
print(f"Error during prediction: {e}")
return f"<h3>Error: {e}</h3>"
# List of class labels
all_labels = [
'Mango Anthracrose',
'Mango Bacterial Canker',
'Mango Cutting Weevil',
'Mango Die Back',
'Mango Gall Midge',
'Mango Healthy',
'Mango Powdery Mildew',
'Mango Sooty Mould'
]
# Language codes and their full names (display full names in dropdown)
language_choices = {
'hi': 'Hindi',
'te': 'Telugu',
'en': 'English',
'ml': 'Malayalam',
'ta': 'Tamil',
'or': 'Odia/Odisi',
'bn': 'Bengali',
'gu': 'Gujarati',
'kn': 'Kannada',
'mr': 'Marathi'
}
# Mapping full names back to their corresponding language code
full_to_code = {value: key for key, value in language_choices.items()}
# Create a dropdown of full language names, using the full name in the UI
languages = list(language_choices.values()) # List of full language names
# Define the Gradio interface
def gradio_predict(image_file, target_language):
# Map full name back to language code for translation
language_code = full_to_code.get(target_language, 'en')
return predict_disease(image_file, model, all_labels, language_code)
# Create the Gradio interface
gr_interface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(type="filepath"), # Image input for disease prediction
gr.Dropdown(label="Select language", choices=languages, value='Choose language') # Language selection dropdown with full names
],
outputs="html", # Output will be in HTML (translated text)
title="Plant Disease Predictor",
description="Upload an image of a plant to predict the disease and get the translated label and pesticide information in the selected language."
)
# Launch the Gradio app
gr_interface.launch()
|