File size: 6,983 Bytes
ae95c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
from tensorflow.keras.utils import img_to_array,load_img
from keras.models import load_model
import numpy as np

# Load the pre-trained model from the local path
model_path = 'citrus.h5'
model = load_model(model_path)  # Load the model here

def predict_disease(image_file, model, all_labels):

    try:
        # Load and preprocess the image
        img = load_img(image_file, target_size=(224, 224))  # Use load_img from tensorflow.keras.utils
        img_array = img_to_array(img)
        img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension
        img_array = img_array / 255.0  # Normalize the image

        # Predict the class
        predictions = model.predict(img_array)  # Use the loaded model here
        predicted_class = np.argmax(predictions[0])

        # Get the predicted class label
        predicted_label = all_labels[predicted_class]

        # Print the predicted label to the console

        if predicted_label=='Citrus Healthy':
            predicted_label = predicted_label = """<h3 align="center">Citrus Healthy</h3><br><br>
          <center>No need use Pesticides</center>"""
        elif predicted_label=='Citrus Greening':
            predicted_label = """
            <style>
                      li{
                        font-size: 15px;
                        margin-left: 90px;
                        margin-top: 15px;
                        margin-bottom: 15px;
                      }
                      h4{
                        font-size: 17px;
                        margin-top: 15px;
                      }
                      h4:hover{
                        cursor: pointer;
                      }

                      h3:hover{
                        cursor: pointer;
                        color: blue;
                        transform: scale(1.3);
                      }
                      .note{
                        text-align: center;
                        font-size: 16px;
                      }
                      p{
                        font-size: 13px;
                        text-align: center;
                      }

                </style>
                <h3><center><b>Citrus Greening</b></center></h3>
                <h4>PESTICIDES TO BE USED:</h4>
                <ul>
                    <li>1. Oxytetracycline (Terramycin)</li>
                    <li>2. Streptomycin (Streptomycin sulfate)</li>
                    <li>3. Mancozeb (Dithane)</li>
                    <li>4. Copper oxychloride (Kocide)</li>



                </ul>
                <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
                <p>Be sure to follow local regulations and guidelines for application</p>


            """
        elif predicted_label=='Citrus Canker':
            predicted_label = """
            <style>
                      li{
                        font-size: 15px;
                        margin-left: 90px;
                        margin-top: 15px;
                        margin-bottom: 15px;
                      }
                      h4{
                        font-size: 17px;
                        margin-top: 15px;
                      }
                      h4:hover{
                        cursor: pointer;
                      }

                      h3:hover{
                        cursor: pointer;
                        color: blue;
                        transform: scale(1.3);
                      }
                      .note{
                        text-align: center;
                        font-size: 16px;
                      }
                      p{
                        font-size: 13px;
                        text-align: center;
                      }

                </style>
                <h3><center><b>Citrus Canker</b></center></h3>
                <h4>PESTICIDES TO BE USED:</h4>
                <ul>
                    <li>1. Oxytetracycline (Terramycin)</li>
                    <li>2. Streptomycin (Streptomycin sulfate)</li>
                    <li>3. Mancozeb (Dithane)</li>
                    <li>4. Copper oxychloride (Kocide)</li>
                    <li>5. Azoxystrobin (Heritage)</li>


                </ul>
                <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
                <p>Be sure to follow local regulations and guidelines for application</p>


            """
        elif predicted_label=='Citrus Black Spot':
            predicted_label = """
            <style>
                      li{
                        font-size: 15px;
                        margin-left: 90px;
                        margin-top: 15px;
                        margin-bottom: 15px;
                      }
                      h4{
                        font-size: 17px;
                        margin-top: 15px;
                      }
                      h4:hover{
                        cursor: pointer;
                      }

                      h3:hover{
                        cursor: pointer;
                        color: blue;
                        transform: scale(1.3);
                      }
                      .note{
                        text-align: center;
                        font-size: 16px;
                      }
                      p{
                        font-size: 13px;
                        text-align: center;
                      }

                </style>
                <h3><center><b>Citrus Black Spot</b></center></h3>
                <h4>PESTICIDES TO BE USED:</h4>
                <ul>
                    <li>1. Propiconazole (Tilt)</li>
                    <li>2. Chlorothalonil (Daconil)</li>
                    <li>3. Mancozeb (Dithane)</li>
                    <li>4. Azoxystrobin (Heritage)</li>
                    <li>5. Pyraclostrobin (Cabrio)</li>


                </ul>
                <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
                <p>Be sure to follow local regulations and guidelines for application</p>


            """



        else:
          predicted_label = """<h3 align="center">Choose Correct image</h3><br><br>
          """

        return predicted_label


    except Exception as e:
        print(f"Error: {e}")
        return None

# List of class labels
all_labels = [
    'Citrus Greening',
    'Citrus Canker',
    'Citrus Healthy','Citrus Black Spot'
]

# Define the Gradio interface
def gradio_predict(image_file):
    return predict_disease(image_file, model, all_labels)  # Pass the model to the function

# Create a Gradio interface
gr_interface = gr.Interface(
    fn=gradio_predict,  # Function to call for predictions
    inputs=gr.Image(type="filepath"),  # Upload image as file path
    outputs="html",  # Output will be the class label as text
    title="Citrus Disease Predictor",
    description="Upload an image of a plant to predict the disease.",
)

# Launch the Gradio app
gr_interface.launch(share=True)