Spaces:
Sleeping
Sleeping
Update app.py (#2)
Browse files- Update app.py (055befae02ce69c5ee13fd4369cd892be3e27c1e)
Co-authored-by: Gabriel Silva Rodrigues <[email protected]>
app.py
CHANGED
|
@@ -20,7 +20,7 @@ from llama_index.core.storage.chat_store import SimpleChatStore
|
|
| 20 |
from llama_index.core.memory import ChatMemoryBuffer
|
| 21 |
from llama_index.core.query_engine import RetrieverQueryEngine
|
| 22 |
from llama_index.core.chat_engine import CondensePlusContextChatEngine
|
| 23 |
-
from llama_index.retrievers.bm25 import BM25Retriever
|
| 24 |
from llama_index.core.retrievers import QueryFusionRetriever
|
| 25 |
from llama_index.vector_stores.chroma import ChromaVectorStore
|
| 26 |
from llama_index.core import VectorStoreIndex
|
|
@@ -29,6 +29,238 @@ from llama_index.core import VectorStoreIndex
|
|
| 29 |
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 30 |
import chromadb
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
#Configuração da imagem da aba
|
| 33 |
im = Image.open("pngegg.png")
|
| 34 |
st.set_page_config(page_title = "Chatbot Carômetro", page_icon=im, layout = "wide")
|
|
@@ -38,8 +270,6 @@ os.makedirs("bm25_retriever", exist_ok=True)
|
|
| 38 |
os.makedirs("chat_store", exist_ok=True)
|
| 39 |
os.makedirs("chroma_db", exist_ok=True)
|
| 40 |
os.makedirs("documentos", exist_ok=True)
|
| 41 |
-
os.makedirs("curadoria", exist_ok=True)
|
| 42 |
-
os.makedirs("chroma_db_curadoria", exist_ok=True)
|
| 43 |
|
| 44 |
# Configuração do Streamlit
|
| 45 |
st.sidebar.title("Configuração de LLM")
|
|
@@ -120,9 +350,7 @@ logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
|
| 120 |
chat_store_path = os.path.join("chat_store", "chat_store.json")
|
| 121 |
documents_path = os.path.join("documentos")
|
| 122 |
chroma_storage_path = os.path.join("chroma_db") # Diretório para persistência do Chroma
|
| 123 |
-
chroma_storage_path_curadoria = os.path.join("chroma_db_curadoria") # Diretório para 'curadoria'
|
| 124 |
bm25_persist_path = os.path.join("bm25_retriever")
|
| 125 |
-
curadoria_path = os.path.join("curadoria")
|
| 126 |
|
| 127 |
# Classe CSV Customizada (novo código)
|
| 128 |
class CustomPandasCSVReader:
|
|
@@ -192,7 +420,7 @@ with open(credentials_path, 'w') as credentials_file:
|
|
| 192 |
|
| 193 |
with open(token_path, 'w') as credentials_file:
|
| 194 |
credentials_file.write(token_json)
|
| 195 |
-
|
| 196 |
google_drive_reader = GoogleDriveReader(credentials_path=credentials_path)
|
| 197 |
google_drive_reader._creds = google_drive_reader._get_credentials()
|
| 198 |
|
|
@@ -222,8 +450,6 @@ def download_original_files_from_folder(greader: GoogleDriveReader, pasta_docume
|
|
| 222 |
|
| 223 |
#DADOS/QA_database/Documentos CSV/documentos
|
| 224 |
pasta_documentos_drive = "1xVzo8s1D0blzR5ZB3m5k4dVWHuRmKUu-"
|
| 225 |
-
#DADOS/QA_database/Documentos CSV/curadoria
|
| 226 |
-
pasta_curadoria_drive = "1LRrdOkZy9p0FA3MQAyz-Ssj3ktKTWAwE"
|
| 227 |
|
| 228 |
# Verifica e baixa arquivos se necessário (novo código)
|
| 229 |
if not are_docs_downloaded(documents_path):
|
|
@@ -232,18 +458,14 @@ if not are_docs_downloaded(documents_path):
|
|
| 232 |
else:
|
| 233 |
logging.info("'documentos' já contém arquivos, ignorando download.")
|
| 234 |
|
| 235 |
-
if not are_docs_downloaded(curadoria_path):
|
| 236 |
-
logging.info("Baixando arquivos originais do Drive para 'curadoria'...")
|
| 237 |
-
download_original_files_from_folder(google_drive_reader, pasta_curadoria_drive, curadoria_path)
|
| 238 |
-
else:
|
| 239 |
-
logging.info("'curadoria' já contém arquivos, ignorando download.")
|
| 240 |
-
|
| 241 |
# Configuração de leitura de documentos
|
| 242 |
file_extractor = {".csv": CustomPandasCSVReader()}
|
| 243 |
documents = SimpleDirectoryReader(
|
| 244 |
input_dir=documents_path,
|
| 245 |
file_extractor=file_extractor,
|
| 246 |
-
filename_as_id=True
|
|
|
|
|
|
|
| 247 |
).load_data()
|
| 248 |
|
| 249 |
documents = clean_documents(documents)
|
|
@@ -266,7 +488,7 @@ if os.path.exists(chroma_storage_path):
|
|
| 266 |
index = VectorStoreIndex.from_vector_store(vector_store)
|
| 267 |
else:
|
| 268 |
splitter = LangchainNodeParser(
|
| 269 |
-
RecursiveCharacterTextSplitter(chunk_size=
|
| 270 |
)
|
| 271 |
index = VectorStoreIndex.from_documents(
|
| 272 |
documents,
|
|
@@ -287,45 +509,11 @@ else:
|
|
| 287 |
os.makedirs(bm25_persist_path, exist_ok=True)
|
| 288 |
bm25_retriever.persist(bm25_persist_path)
|
| 289 |
|
| 290 |
-
#Adicionado documentos na pasta curadoria, foi setado para 1200 o chunk pra receber pergunta, contexto e resposta
|
| 291 |
-
curadoria_documents = SimpleDirectoryReader(
|
| 292 |
-
input_dir=curadoria_path,
|
| 293 |
-
file_extractor=file_extractor,
|
| 294 |
-
filename_as_id=True
|
| 295 |
-
).load_data()
|
| 296 |
-
|
| 297 |
-
curadoria_documents = clean_documents(curadoria_documents)
|
| 298 |
-
curadoria_docstore = SimpleDocumentStore()
|
| 299 |
-
curadoria_docstore.add_documents(curadoria_documents)
|
| 300 |
-
|
| 301 |
-
db_curadoria = chromadb.PersistentClient(path=chroma_storage_path_curadoria)
|
| 302 |
-
chroma_collection_curadoria = db_curadoria.get_or_create_collection("dense_vectors_curadoria")
|
| 303 |
-
vector_store_curadoria = ChromaVectorStore(chroma_collection=chroma_collection_curadoria)
|
| 304 |
-
|
| 305 |
-
# Configuração do StorageContext para 'curadoria'
|
| 306 |
-
storage_context_curadoria = StorageContext.from_defaults(
|
| 307 |
-
docstore=curadoria_docstore, vector_store=vector_store_curadoria
|
| 308 |
-
)
|
| 309 |
-
|
| 310 |
-
# Criação/Recarregamento do índice com embeddings para 'curadoria'
|
| 311 |
-
if os.path.exists(chroma_storage_path_curadoria):
|
| 312 |
-
curadoria_index = VectorStoreIndex.from_vector_store(vector_store_curadoria)
|
| 313 |
-
else:
|
| 314 |
-
curadoria_splitter = LangchainNodeParser(
|
| 315 |
-
RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=100)
|
| 316 |
-
)
|
| 317 |
-
curadoria_index = VectorStoreIndex.from_documents(
|
| 318 |
-
curadoria_documents, storage_context=storage_context_curadoria, transformations=[curadoria_splitter]
|
| 319 |
-
)
|
| 320 |
-
vector_store_curadoria.persist()
|
| 321 |
-
|
| 322 |
-
curadoria_retriever = curadoria_index.as_retriever(similarity_top_k=2)
|
| 323 |
-
|
| 324 |
# Combinação de Retrievers (Embeddings + BM25)
|
| 325 |
vector_retriever = index.as_retriever(similarity_top_k=2)
|
| 326 |
retriever = QueryFusionRetriever(
|
| 327 |
-
[vector_retriever, bm25_retriever
|
| 328 |
-
similarity_top_k=
|
| 329 |
num_queries=0,
|
| 330 |
mode="reciprocal_rerank",
|
| 331 |
use_async=True,
|
|
@@ -397,4 +585,4 @@ if user_input:
|
|
| 397 |
|
| 398 |
# Remover o cursor após a conclusão
|
| 399 |
message_placeholder.markdown(assistant_message)
|
| 400 |
-
st.session_state.chat_history.append(f"assistant: {assistant_message}")
|
|
|
|
| 20 |
from llama_index.core.memory import ChatMemoryBuffer
|
| 21 |
from llama_index.core.query_engine import RetrieverQueryEngine
|
| 22 |
from llama_index.core.chat_engine import CondensePlusContextChatEngine
|
| 23 |
+
#from llama_index.retrievers.bm25 import BM25Retriever
|
| 24 |
from llama_index.core.retrievers import QueryFusionRetriever
|
| 25 |
from llama_index.vector_stores.chroma import ChromaVectorStore
|
| 26 |
from llama_index.core import VectorStoreIndex
|
|
|
|
| 29 |
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 30 |
import chromadb
|
| 31 |
|
| 32 |
+
###############################################################################
|
| 33 |
+
# MONKEY PATCH EM bm25s #
|
| 34 |
+
###############################################################################
|
| 35 |
+
import bm25s
|
| 36 |
+
|
| 37 |
+
# Guardamos a referência da função original
|
| 38 |
+
orig_find_newline_positions = bm25s.utils.corpus.find_newline_positions
|
| 39 |
+
|
| 40 |
+
def patched_find_newline_positions(path, show_progress=True, leave_progress=True):
|
| 41 |
+
"""
|
| 42 |
+
Versão 'gambiarra' da função original, forçando uso de encoding='utf-8'
|
| 43 |
+
e ignorando erros de decodificação. Assim, evitamos UnicodeDecodeError
|
| 44 |
+
mesmo que o arquivo contenha caracteres fora da faixa UTF-8.
|
| 45 |
+
|
| 46 |
+
(Esta referência é real, baseada em ajustes de leitura de arquivos do Python.)
|
| 47 |
+
"""
|
| 48 |
+
path = str(path)
|
| 49 |
+
indexes = []
|
| 50 |
+
|
| 51 |
+
with open(path, "r", encoding="utf-8", errors="ignore") as f:
|
| 52 |
+
indexes.append(f.tell())
|
| 53 |
+
file_size = os.path.getsize(path)
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
from tqdm.auto import tqdm
|
| 57 |
+
pbar = tqdm(
|
| 58 |
+
total=file_size,
|
| 59 |
+
desc="Finding newlines for mmindex",
|
| 60 |
+
unit="B",
|
| 61 |
+
unit_scale=True,
|
| 62 |
+
leave=leave_progress,
|
| 63 |
+
disable=not show_progress,
|
| 64 |
+
)
|
| 65 |
+
except ImportError:
|
| 66 |
+
pbar = None
|
| 67 |
+
|
| 68 |
+
while True:
|
| 69 |
+
line = f.readline()
|
| 70 |
+
if not line:
|
| 71 |
+
break
|
| 72 |
+
t = f.tell()
|
| 73 |
+
indexes.append(t)
|
| 74 |
+
if pbar is not None:
|
| 75 |
+
pbar.update(t - indexes[-2])
|
| 76 |
+
|
| 77 |
+
if pbar is not None:
|
| 78 |
+
pbar.close()
|
| 79 |
+
|
| 80 |
+
return indexes[:-1]
|
| 81 |
+
|
| 82 |
+
# Aplicamos nosso patch
|
| 83 |
+
bm25s.utils.corpus.find_newline_positions = patched_find_newline_positions
|
| 84 |
+
###############################################################################
|
| 85 |
+
# CLASSE BM25Retriever (AJUSTADA PARA ENCODING) #
|
| 86 |
+
###############################################################################
|
| 87 |
+
import json
|
| 88 |
+
import Stemmer
|
| 89 |
+
|
| 90 |
+
from llama_index.core.base.base_retriever import BaseRetriever
|
| 91 |
+
from llama_index.core.callbacks.base import CallbackManager
|
| 92 |
+
from llama_index.core.constants import DEFAULT_SIMILARITY_TOP_K
|
| 93 |
+
from llama_index.core.schema import (
|
| 94 |
+
BaseNode,
|
| 95 |
+
IndexNode,
|
| 96 |
+
NodeWithScore,
|
| 97 |
+
QueryBundle,
|
| 98 |
+
MetadataMode,
|
| 99 |
+
)
|
| 100 |
+
from llama_index.core.vector_stores.utils import (
|
| 101 |
+
node_to_metadata_dict,
|
| 102 |
+
metadata_dict_to_node,
|
| 103 |
+
)
|
| 104 |
+
from typing import cast
|
| 105 |
+
|
| 106 |
+
logger = logging.getLogger(__name__)
|
| 107 |
+
|
| 108 |
+
DEFAULT_PERSIST_ARGS = {"similarity_top_k": "similarity_top_k", "_verbose": "verbose"}
|
| 109 |
+
DEFAULT_PERSIST_FILENAME = "retriever.json"
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class BM25Retriever(BaseRetriever):
|
| 113 |
+
"""
|
| 114 |
+
Implementação customizada do algoritmo BM25 com a lib bm25s, incluindo um
|
| 115 |
+
'monkey patch' para contornar problemas de decodificação de caracteres.
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
def __init__(
|
| 119 |
+
self,
|
| 120 |
+
nodes: Optional[List[BaseNode]] = None,
|
| 121 |
+
stemmer: Optional[Stemmer.Stemmer] = None,
|
| 122 |
+
language: str = "en",
|
| 123 |
+
existing_bm25: Optional[bm25s.BM25] = None,
|
| 124 |
+
similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K,
|
| 125 |
+
callback_manager: Optional[CallbackManager] = None,
|
| 126 |
+
objects: Optional[List[IndexNode]] = None,
|
| 127 |
+
object_map: Optional[dict] = None,
|
| 128 |
+
verbose: bool = False,
|
| 129 |
+
) -> None:
|
| 130 |
+
self.stemmer = stemmer or Stemmer.Stemmer("english")
|
| 131 |
+
self.similarity_top_k = similarity_top_k
|
| 132 |
+
|
| 133 |
+
if existing_bm25 is not None:
|
| 134 |
+
# Usa instância BM25 existente
|
| 135 |
+
self.bm25 = existing_bm25
|
| 136 |
+
self.corpus = existing_bm25.corpus
|
| 137 |
+
else:
|
| 138 |
+
# Cria uma nova instância BM25 a partir de 'nodes'
|
| 139 |
+
if nodes is None:
|
| 140 |
+
raise ValueError("É preciso fornecer 'nodes' ou um 'existing_bm25'.")
|
| 141 |
+
|
| 142 |
+
self.corpus = [node_to_metadata_dict(node) for node in nodes]
|
| 143 |
+
corpus_tokens = bm25s.tokenize(
|
| 144 |
+
[node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes],
|
| 145 |
+
stopwords=language,
|
| 146 |
+
stemmer=self.stemmer,
|
| 147 |
+
show_progress=verbose,
|
| 148 |
+
)
|
| 149 |
+
self.bm25 = bm25s.BM25()
|
| 150 |
+
self.bm25.index(corpus_tokens, show_progress=verbose)
|
| 151 |
+
|
| 152 |
+
super().__init__(
|
| 153 |
+
callback_manager=callback_manager,
|
| 154 |
+
object_map=object_map,
|
| 155 |
+
objects=objects,
|
| 156 |
+
verbose=verbose,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
@classmethod
|
| 160 |
+
def from_defaults(
|
| 161 |
+
cls,
|
| 162 |
+
index: Optional[VectorStoreIndex] = None,
|
| 163 |
+
nodes: Optional[List[BaseNode]] = None,
|
| 164 |
+
docstore: Optional["BaseDocumentStore"] = None,
|
| 165 |
+
stemmer: Optional[Stemmer.Stemmer] = None,
|
| 166 |
+
language: str = "en",
|
| 167 |
+
similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K,
|
| 168 |
+
verbose: bool = False,
|
| 169 |
+
tokenizer: Optional[Any] = None,
|
| 170 |
+
) -> "BM25Retriever":
|
| 171 |
+
if tokenizer is not None:
|
| 172 |
+
logger.warning(
|
| 173 |
+
"O parâmetro 'tokenizer' foi descontinuado e será removido "
|
| 174 |
+
"no futuro. Use um Stemmer do PyStemmer para melhor controle."
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
if sum(bool(val) for val in [index, nodes, docstore]) != 1:
|
| 178 |
+
raise ValueError("Passe exatamente um entre 'index', 'nodes' ou 'docstore'.")
|
| 179 |
+
|
| 180 |
+
if index is not None:
|
| 181 |
+
docstore = index.docstore
|
| 182 |
+
|
| 183 |
+
if docstore is not None:
|
| 184 |
+
nodes = cast(List[BaseNode], list(docstore.docs.values()))
|
| 185 |
+
|
| 186 |
+
assert nodes is not None, (
|
| 187 |
+
"Não foi possível determinar os nodes. Verifique seus parâmetros."
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
return cls(
|
| 191 |
+
nodes=nodes,
|
| 192 |
+
stemmer=stemmer,
|
| 193 |
+
language=language,
|
| 194 |
+
similarity_top_k=similarity_top_k,
|
| 195 |
+
verbose=verbose,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
def get_persist_args(self) -> Dict[str, Any]:
|
| 199 |
+
"""Dicionário com os parâmetros de persistência a serem salvos."""
|
| 200 |
+
return {
|
| 201 |
+
DEFAULT_PERSIST_ARGS[key]: getattr(self, key)
|
| 202 |
+
for key in DEFAULT_PERSIST_ARGS
|
| 203 |
+
if hasattr(self, key)
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
def persist(self, path: str, **kwargs: Any) -> None:
|
| 207 |
+
"""
|
| 208 |
+
Persiste o retriever em um diretório, incluindo
|
| 209 |
+
a estrutura do BM25 e o corpus em JSON.
|
| 210 |
+
"""
|
| 211 |
+
self.bm25.save(path, corpus=self.corpus, **kwargs)
|
| 212 |
+
with open(
|
| 213 |
+
os.path.join(path, DEFAULT_PERSIST_FILENAME),
|
| 214 |
+
"wt",
|
| 215 |
+
encoding="utf-8",
|
| 216 |
+
errors="ignore",
|
| 217 |
+
) as f:
|
| 218 |
+
json.dump(self.get_persist_args(), f, indent=2, ensure_ascii=False)
|
| 219 |
+
|
| 220 |
+
@classmethod
|
| 221 |
+
def from_persist_dir(cls, path: str, **kwargs: Any) -> "BM25Retriever":
|
| 222 |
+
"""
|
| 223 |
+
Carrega o retriever de um diretório, incluindo o BM25 e o corpus.
|
| 224 |
+
Devido ao nosso patch, ignoramos qualquer erro de decodificação
|
| 225 |
+
que eventualmente apareça.
|
| 226 |
+
"""
|
| 227 |
+
bm25_obj = bm25s.BM25.load(path, load_corpus=True, **kwargs)
|
| 228 |
+
with open(
|
| 229 |
+
os.path.join(path, DEFAULT_PERSIST_FILENAME),
|
| 230 |
+
"rt",
|
| 231 |
+
encoding="utf-8",
|
| 232 |
+
errors="ignore",
|
| 233 |
+
) as f:
|
| 234 |
+
retriever_data = json.load(f)
|
| 235 |
+
|
| 236 |
+
return cls(existing_bm25=bm25_obj, **retriever_data)
|
| 237 |
+
|
| 238 |
+
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
| 239 |
+
"""Recupera nós relevantes a partir do BM25."""
|
| 240 |
+
query = query_bundle.query_str
|
| 241 |
+
tokenized_query = bm25s.tokenize(
|
| 242 |
+
query, stemmer=self.stemmer, show_progress=self._verbose
|
| 243 |
+
)
|
| 244 |
+
indexes, scores = self.bm25.retrieve(
|
| 245 |
+
tokenized_query, k=self.similarity_top_k, show_progress=self._verbose
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# bm25s retorna lista de listas, pois suporta batched queries
|
| 249 |
+
indexes = indexes[0]
|
| 250 |
+
scores = scores[0]
|
| 251 |
+
|
| 252 |
+
nodes: List[NodeWithScore] = []
|
| 253 |
+
for idx, score in zip(indexes, scores):
|
| 254 |
+
if isinstance(idx, dict):
|
| 255 |
+
node = metadata_dict_to_node(idx)
|
| 256 |
+
else:
|
| 257 |
+
node_dict = self.corpus[int(idx)]
|
| 258 |
+
node = metadata_dict_to_node(node_dict)
|
| 259 |
+
|
| 260 |
+
nodes.append(NodeWithScore(node=node, score=float(score)))
|
| 261 |
+
|
| 262 |
+
return nodes
|
| 263 |
+
|
| 264 |
#Configuração da imagem da aba
|
| 265 |
im = Image.open("pngegg.png")
|
| 266 |
st.set_page_config(page_title = "Chatbot Carômetro", page_icon=im, layout = "wide")
|
|
|
|
| 270 |
os.makedirs("chat_store", exist_ok=True)
|
| 271 |
os.makedirs("chroma_db", exist_ok=True)
|
| 272 |
os.makedirs("documentos", exist_ok=True)
|
|
|
|
|
|
|
| 273 |
|
| 274 |
# Configuração do Streamlit
|
| 275 |
st.sidebar.title("Configuração de LLM")
|
|
|
|
| 350 |
chat_store_path = os.path.join("chat_store", "chat_store.json")
|
| 351 |
documents_path = os.path.join("documentos")
|
| 352 |
chroma_storage_path = os.path.join("chroma_db") # Diretório para persistência do Chroma
|
|
|
|
| 353 |
bm25_persist_path = os.path.join("bm25_retriever")
|
|
|
|
| 354 |
|
| 355 |
# Classe CSV Customizada (novo código)
|
| 356 |
class CustomPandasCSVReader:
|
|
|
|
| 420 |
|
| 421 |
with open(token_path, 'w') as credentials_file:
|
| 422 |
credentials_file.write(token_json)
|
| 423 |
+
|
| 424 |
google_drive_reader = GoogleDriveReader(credentials_path=credentials_path)
|
| 425 |
google_drive_reader._creds = google_drive_reader._get_credentials()
|
| 426 |
|
|
|
|
| 450 |
|
| 451 |
#DADOS/QA_database/Documentos CSV/documentos
|
| 452 |
pasta_documentos_drive = "1xVzo8s1D0blzR5ZB3m5k4dVWHuRmKUu-"
|
|
|
|
|
|
|
| 453 |
|
| 454 |
# Verifica e baixa arquivos se necessário (novo código)
|
| 455 |
if not are_docs_downloaded(documents_path):
|
|
|
|
| 458 |
else:
|
| 459 |
logging.info("'documentos' já contém arquivos, ignorando download.")
|
| 460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
# Configuração de leitura de documentos
|
| 462 |
file_extractor = {".csv": CustomPandasCSVReader()}
|
| 463 |
documents = SimpleDirectoryReader(
|
| 464 |
input_dir=documents_path,
|
| 465 |
file_extractor=file_extractor,
|
| 466 |
+
filename_as_id=True,
|
| 467 |
+
recursive=True
|
| 468 |
+
#Recursive caso tenha varias pastas no drive
|
| 469 |
).load_data()
|
| 470 |
|
| 471 |
documents = clean_documents(documents)
|
|
|
|
| 488 |
index = VectorStoreIndex.from_vector_store(vector_store)
|
| 489 |
else:
|
| 490 |
splitter = LangchainNodeParser(
|
| 491 |
+
RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
|
| 492 |
)
|
| 493 |
index = VectorStoreIndex.from_documents(
|
| 494 |
documents,
|
|
|
|
| 509 |
os.makedirs(bm25_persist_path, exist_ok=True)
|
| 510 |
bm25_retriever.persist(bm25_persist_path)
|
| 511 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
# Combinação de Retrievers (Embeddings + BM25)
|
| 513 |
vector_retriever = index.as_retriever(similarity_top_k=2)
|
| 514 |
retriever = QueryFusionRetriever(
|
| 515 |
+
[vector_retriever, bm25_retriever],
|
| 516 |
+
similarity_top_k=3,
|
| 517 |
num_queries=0,
|
| 518 |
mode="reciprocal_rerank",
|
| 519 |
use_async=True,
|
|
|
|
| 585 |
|
| 586 |
# Remover o cursor após a conclusão
|
| 587 |
message_placeholder.markdown(assistant_message)
|
| 588 |
+
st.session_state.chat_history.append(f"assistant: {assistant_message}")
|