Spaces:
Sleeping
Sleeping
IZERE HIRWA Roger
commited on
Commit
·
02d423d
1
Parent(s):
5980c9f
ok
Browse files- app.py +221 -0
- requirements.txt +11 -0
- sam_vit_b_01ec64.pth +3 -0
app.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
from segment_anything import SamPredictor, sam_model_registry
|
| 5 |
+
from diffusers import StableDiffusionInpaintPipeline
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from PIL import Image, ImageDraw
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from matplotlib.colors import LinearSegmentedColormap
|
| 10 |
+
import tempfile
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# Initialize models (cached for performance)
|
| 14 |
+
sam_model = None
|
| 15 |
+
sd_pipe = None
|
| 16 |
+
predictor = None
|
| 17 |
+
|
| 18 |
+
def load_models():
|
| 19 |
+
global sam_model, sd_pipe, predictor
|
| 20 |
+
if sam_model is None:
|
| 21 |
+
print("Loading SAM model...")
|
| 22 |
+
sam_model = sam_model_registry["vit_h"](checkpoint="sam_vit_b_01ec64.pth")
|
| 23 |
+
predictor = SamPredictor(sam_model)
|
| 24 |
+
|
| 25 |
+
if sd_pipe is None:
|
| 26 |
+
print("Loading Stable Diffusion model...")
|
| 27 |
+
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 28 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
| 29 |
+
torch_dtype=torch.float16,
|
| 30 |
+
safety_checker=None
|
| 31 |
+
).to("cuda")
|
| 32 |
+
|
| 33 |
+
return predictor, sd_pipe
|
| 34 |
+
|
| 35 |
+
def process_house_image(image, scale):
|
| 36 |
+
predictor, _ = load_models()
|
| 37 |
+
|
| 38 |
+
# Convert to RGB and numpy array
|
| 39 |
+
image = np.array(image)
|
| 40 |
+
if image.shape[-1] == 4: # Remove alpha channel if exists
|
| 41 |
+
image = image[..., :3]
|
| 42 |
+
|
| 43 |
+
# Process with SAM
|
| 44 |
+
predictor.set_image(image)
|
| 45 |
+
masks, scores, _ = predictor.predict()
|
| 46 |
+
|
| 47 |
+
# Filter for roof segments
|
| 48 |
+
roof_masks = []
|
| 49 |
+
for i, mask in enumerate(masks):
|
| 50 |
+
# Basic roof filtering (position and size)
|
| 51 |
+
y_indices, x_indices = np.where(mask)
|
| 52 |
+
if len(y_indices) == 0:
|
| 53 |
+
continue
|
| 54 |
+
|
| 55 |
+
centroid_y = np.mean(y_indices)
|
| 56 |
+
height_ratio = (np.max(y_indices) - np.min(y_indices)) / image.shape[0]
|
| 57 |
+
|
| 58 |
+
# Roofs are typically in upper half and cover significant vertical space
|
| 59 |
+
if centroid_y < image.shape[0] * 0.6 and height_ratio > 0.1:
|
| 60 |
+
roof_masks.append((mask, scores[i]))
|
| 61 |
+
|
| 62 |
+
# Sort by score and select top masks
|
| 63 |
+
roof_masks.sort(key=lambda x: x[1], reverse=True)
|
| 64 |
+
final_mask = np.zeros(image.shape[:2], dtype=bool)
|
| 65 |
+
|
| 66 |
+
# Combine top 3 roof masks
|
| 67 |
+
for mask, _ in roof_masks[:3]:
|
| 68 |
+
final_mask = np.logical_or(final_mask, mask)
|
| 69 |
+
|
| 70 |
+
# Create overlay visualization
|
| 71 |
+
overlay = image.copy()
|
| 72 |
+
cmap = LinearSegmentedColormap.from_list('roof_cmap', ['#00000000', '#ff000080'])
|
| 73 |
+
mask_rgb = (cmap(final_mask.astype(float))[..., :3] * 255).astype(np.uint8)
|
| 74 |
+
overlay = (0.6 * overlay + 0.4 * mask_rgb).astype(np.uint8)
|
| 75 |
+
|
| 76 |
+
# Calculate area
|
| 77 |
+
roof_pixels = np.sum(final_mask)
|
| 78 |
+
roof_area = roof_pixels / (scale ** 2) # in square meters
|
| 79 |
+
|
| 80 |
+
return overlay, final_mask, roof_area
|
| 81 |
+
|
| 82 |
+
def calculate_sheets(roof_area, sheet_width, sheet_height, waste_factor=0.15):
|
| 83 |
+
sheet_area = sheet_width * sheet_height
|
| 84 |
+
sheets = (roof_area / sheet_area) * (1 + waste_factor)
|
| 85 |
+
return int(np.ceil(sheets))
|
| 86 |
+
|
| 87 |
+
def generate_new_roof(image, roof_mask, pattern_prompt, sheet_width, sheet_height):
|
| 88 |
+
_, sd_pipe = load_models()
|
| 89 |
+
|
| 90 |
+
# Convert to PIL format
|
| 91 |
+
image_pil = Image.fromarray(image)
|
| 92 |
+
|
| 93 |
+
# Convert mask to PIL format
|
| 94 |
+
mask_pil = Image.fromarray(roof_mask.astype(np.uint8) * 255)
|
| 95 |
+
|
| 96 |
+
# Enhance prompt with sheet dimensions
|
| 97 |
+
enhanced_prompt = f"{pattern_prompt}, {sheet_width:.2f}m x {sheet_height:.2f}m sheets, architectural visualization, photorealistic"
|
| 98 |
+
|
| 99 |
+
# Generate new roof
|
| 100 |
+
result = sd_pipe(
|
| 101 |
+
prompt=enhanced_prompt,
|
| 102 |
+
image=image_pil,
|
| 103 |
+
mask_image=mask_pil,
|
| 104 |
+
num_inference_steps=30,
|
| 105 |
+
guidance_scale=7.5
|
| 106 |
+
).images[0]
|
| 107 |
+
|
| 108 |
+
return result
|
| 109 |
+
|
| 110 |
+
def full_process(image, scale, sheet_width, sheet_height, pattern_prompt):
|
| 111 |
+
# Convert image to numpy array
|
| 112 |
+
if isinstance(image, str):
|
| 113 |
+
image = np.array(Image.open(image))
|
| 114 |
+
else:
|
| 115 |
+
image = np.array(image)
|
| 116 |
+
|
| 117 |
+
# Process image to get roof mask
|
| 118 |
+
overlay, roof_mask, roof_area = process_house_image(image, scale)
|
| 119 |
+
|
| 120 |
+
# Calculate sheets needed
|
| 121 |
+
sheets_needed = calculate_sheets(roof_area, sheet_width, sheet_height)
|
| 122 |
+
|
| 123 |
+
# Generate new roof visualization
|
| 124 |
+
new_roof_image = generate_new_roof(image, roof_mask, pattern_prompt, sheet_width, sheet_height)
|
| 125 |
+
|
| 126 |
+
# Create result visualization
|
| 127 |
+
fig, ax = plt.subplots(1, 3, figsize=(18, 6))
|
| 128 |
+
|
| 129 |
+
# Original with overlay
|
| 130 |
+
ax[0].imshow(overlay)
|
| 131 |
+
ax[0].set_title("Roof Segmentation")
|
| 132 |
+
ax[0].axis('off')
|
| 133 |
+
|
| 134 |
+
# New roof
|
| 135 |
+
ax[1].imshow(new_roof_image)
|
| 136 |
+
ax[1].set_title("New Roof Design")
|
| 137 |
+
ax[1].axis('off')
|
| 138 |
+
|
| 139 |
+
# Info panel
|
| 140 |
+
info_text = f"Roof Area: {roof_area:.2f} m²\n\n" \
|
| 141 |
+
f"Sheet Size: {sheet_width} × {sheet_height} m\n\n" \
|
| 142 |
+
f"Sheets Needed: {sheets_needed}\n\n" \
|
| 143 |
+
f"Pattern: {pattern_prompt}"
|
| 144 |
+
|
| 145 |
+
ax[2].text(0.1, 0.5, info_text, fontsize=12,
|
| 146 |
+
bbox=dict(facecolor='white', alpha=0.8))
|
| 147 |
+
ax[2].axis('off')
|
| 148 |
+
plt.tight_layout()
|
| 149 |
+
|
| 150 |
+
# Save to temp file
|
| 151 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
| 152 |
+
plt.savefig(temp_file.name, bbox_inches='tight')
|
| 153 |
+
plt.close()
|
| 154 |
+
|
| 155 |
+
return temp_file.name, sheets_needed
|
| 156 |
+
|
| 157 |
+
# Gradio interface
|
| 158 |
+
with gr.Blocks(title="Roof Renovation System", theme=gr.themes.Soft()) as demo:
|
| 159 |
+
gr.Markdown("# 🏠 Roof Segmentation & Renovation System")
|
| 160 |
+
gr.Markdown("Upload a house image, specify dimensions, and visualize new roof designs with material calculations")
|
| 161 |
+
|
| 162 |
+
with gr.Row():
|
| 163 |
+
with gr.Column():
|
| 164 |
+
image_input = gr.Image(label="Upload House Image", type="filepath")
|
| 165 |
+
scale_input = gr.Slider(1, 500, value=100,
|
| 166 |
+
label="Scale (pixels per meter)",
|
| 167 |
+
info="Adjust based on image perspective")
|
| 168 |
+
|
| 169 |
+
pattern_prompt = gr.Textbox(label="Roof Pattern Description",
|
| 170 |
+
value="modern red tile pattern",
|
| 171 |
+
placeholder="Describe the new roof pattern")
|
| 172 |
+
|
| 173 |
+
with gr.Row():
|
| 174 |
+
sheet_width = gr.Number(label="Sheet Width (meters)", value=0.5)
|
| 175 |
+
sheet_height = gr.Number(label="Sheet Height (meters)", value=2.0)
|
| 176 |
+
|
| 177 |
+
submit_btn = gr.Button("Generate Roof Design", variant="primary")
|
| 178 |
+
|
| 179 |
+
with gr.Column():
|
| 180 |
+
output_image = gr.Image(label="Results", interactive=False)
|
| 181 |
+
sheets_output = gr.Number(label="Sheets Needed", interactive=False)
|
| 182 |
+
|
| 183 |
+
# Examples
|
| 184 |
+
gr.Examples(
|
| 185 |
+
examples=[
|
| 186 |
+
["examples/house1.jpg", 120, 0.6, 1.8, "gray shingle pattern"],
|
| 187 |
+
["examples/house2.jpg", 150, 0.4, 2.2, "terracotta tile pattern"],
|
| 188 |
+
["examples/house3.jpg", 200, 0.5, 2.0, "metal roof with visible seams"]
|
| 189 |
+
],
|
| 190 |
+
inputs=[image_input, scale_input, sheet_width, sheet_height, pattern_prompt],
|
| 191 |
+
outputs=[output_image, sheets_output],
|
| 192 |
+
fn=full_process,
|
| 193 |
+
cache_examples=True
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
submit_btn.click(
|
| 197 |
+
fn=full_process,
|
| 198 |
+
inputs=[image_input, scale_input, sheet_width, sheet_height, pattern_prompt],
|
| 199 |
+
outputs=[output_image, sheets_output]
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
gr.Markdown("### How It Works:")
|
| 203 |
+
gr.Markdown("1. Upload a house image (aerial or perspective view) \n"
|
| 204 |
+
"2. Adjust the scale (pixels per meter) based on image perspective \n"
|
| 205 |
+
"3. Enter new roof sheet dimensions \n"
|
| 206 |
+
"4. Describe your desired roof pattern \n"
|
| 207 |
+
"5. Click generate to see the new design and material requirements")
|
| 208 |
+
|
| 209 |
+
gr.Markdown("### Technical Notes:")
|
| 210 |
+
gr.Markdown("- Uses Meta's Segment Anything Model (SAM) for roof detection \n"
|
| 211 |
+
"- Utilizes Stable Diffusion for realistic roof pattern generation \n"
|
| 212 |
+
"- Material calculations include 15% wastage factor \n"
|
| 213 |
+
"- Processing may take 20-40 seconds depending on image size")
|
| 214 |
+
|
| 215 |
+
# For Hugging Face Spaces deployment
|
| 216 |
+
if __name__ == "__main__":
|
| 217 |
+
# Create example images directory if needed
|
| 218 |
+
os.makedirs("examples", exist_ok=True)
|
| 219 |
+
|
| 220 |
+
# Run the app
|
| 221 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
segment-anything
|
| 5 |
+
diffusers
|
| 6 |
+
transformers
|
| 7 |
+
accelerate
|
| 8 |
+
matplotlib
|
| 9 |
+
numpy
|
| 10 |
+
opencv-python
|
| 11 |
+
Pillow
|
sam_vit_b_01ec64.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec2df62732614e57411cdcf32a23ffdf28910380d03139ee0f4fcbe91eb8c912
|
| 3 |
+
size 375042383
|