from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import torch import gradio as gr # Load model processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten") # Define prediction function def recognize_text(image): image = Image.fromarray(image).convert("RGB") pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return text # Create Gradio interface interface = gr.Interface( fn=recognize_text, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=gr.Textbox(label="Recognized Text"), title="Handwritten Text Recognition", description="Upload an image of handwritten text to recognize it using TrOCR.", ) # Launch interface interface.launch(share=True)