Spaces:
Runtime error
Runtime error
File size: 3,503 Bytes
0c810f3 6566a4a 0c810f3 6566a4a 0c810f3 2937f03 0c810f3 2937f03 886c3b9 2937f03 0c810f3 2937f03 0c810f3 2937f03 0c810f3 2937f03 0c810f3 6566a4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import io
from fastapi import FastAPI, File, UploadFile
from werkzeug.utils import secure_filename
import speech_recognition as sr
import subprocess
import os
import requests
import random
import pandas as pd
from pydub import AudioSegment
from datetime import datetime
from datetime import date
import numpy as np
from sklearn.ensemble import RandomForestRegressor
import shutil
import json
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
from pydantic import BaseModel
from typing import Annotated
from transformers import BertTokenizerFast, EncoderDecoderModel
import torch
import threading
import random
import string
import time
from fastapi import Form
class Query(BaseModel):
text: str
class Query2(BaseModel):
text: str
host:str
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = BertTokenizerFast.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization')
# model = EncoderDecoderModel.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization').to(device)
summarizer = pipeline(
"summarization",
"pszemraj/long-t5-tglobal-base-16384-book-summary",
device=0 if torch.cuda.is_available() else -1,
)
def generate_summary(text):
result = summarizer(text,max_length=10000)
return result[0]["summary_text"]
# cut off at BERT max length 512
# inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
# input_ids = inputs.input_ids.to(device)
# attention_mask = inputs.attention_mask.to(device)
# output = model.generate(input_ids, attention_mask=attention_mask)
# return tokenizer.decode(output[0], skip_special_tokens=True)
from fastapi import FastAPI, Request, Depends, UploadFile, File
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
# now = datetime.now()
# UPLOAD_FOLDER = '/files'
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png',
# 'jpg', 'jpeg', 'gif', 'ogg', 'mp3', 'wav'}
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=['*'],
allow_headers=['*'],
)
# cred = credentials.Certificate('key.json')
# app1 = firebase_admin.initialize_app(cred)
# db = firestore.client()
# data_frame = pd.read_csv('data.csv')
@app.on_event("startup")
async def startup_event():
print("on startup")
@app.post("/")
async def get_answer(q: Query ):
long_text = q.text
r= generate_summary(long_text)
return r
return "hello"
@app.post("/large")
async def get_answer(q: Query2 ):
N = 20
res = ''.join(random.choices(string.ascii_uppercase +
string.digits, k=N))
res= res+ str(time.time())
id= res
text = q.text
host= q.host
t = threading.Thread(target=do_ML, args=(id,text,host))
t.start()
return JSONResponse({"id":id})
return "hello"
import requests
def do_ML(id:str,long_text:str,host:str):
try:
r= generate_summary(long_text)
data={"id":id,"result":r}
x=requests.post(host,data= data)
print(x.text)
except:
print("Error occured id= "+id)
|