File size: 3,503 Bytes
0c810f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6566a4a
 
 
 
0c810f3
 
 
 
 
6566a4a
 
 
 
 
0c810f3
2937f03
 
 
 
 
 
 
 
 
 
0c810f3
 
2937f03
886c3b9
2937f03
0c810f3
2937f03
 
 
0c810f3
2937f03
0c810f3
2937f03
0c810f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6566a4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import io
from fastapi import FastAPI, File, UploadFile
from werkzeug.utils import secure_filename
import speech_recognition as sr
import subprocess
import os
import requests
import random
import pandas as pd
from pydub import AudioSegment
from datetime import datetime
from datetime import date
import numpy as np
from sklearn.ensemble import RandomForestRegressor
import shutil
import json
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
from pydantic import BaseModel
from typing import Annotated
from transformers import BertTokenizerFast, EncoderDecoderModel
import torch
import threading
import random
import string
import time

from fastapi import Form

class Query(BaseModel):
    text: str


class Query2(BaseModel):
    text: str
    host:str
   
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = BertTokenizerFast.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization')
# model = EncoderDecoderModel.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization').to(device)

summarizer = pipeline(
    "summarization",
    "pszemraj/long-t5-tglobal-base-16384-book-summary",
    device=0 if torch.cuda.is_available() else -1,
)


def generate_summary(text):
    
    result = summarizer(text,max_length=10000)
    return result[0]["summary_text"]
    # cut off at BERT max length 512
    # inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
    # input_ids = inputs.input_ids.to(device)
    # attention_mask = inputs.attention_mask.to(device)

    # output = model.generate(input_ids, attention_mask=attention_mask)

    # return tokenizer.decode(output[0], skip_special_tokens=True)


from fastapi import FastAPI, Request, Depends, UploadFile, File
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse


# now = datetime.now()


# UPLOAD_FOLDER = '/files'
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png',
#                       'jpg', 'jpeg', 'gif', 'ogg', 'mp3', 'wav'}


app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=['*'],
    allow_credentials=True,
    allow_methods=['*'],
    allow_headers=['*'],
)


# cred = credentials.Certificate('key.json')
# app1 = firebase_admin.initialize_app(cred)
# db = firestore.client()
# data_frame = pd.read_csv('data.csv')



@app.on_event("startup")
async def startup_event():
   print("on startup")

   


@app.post("/")
async def get_answer(q: Query ):

    long_text = q.text
    
   
    r= generate_summary(long_text)
    return r
      
   
    return "hello"


@app.post("/large")
async def get_answer(q: Query2 ):

    N = 20
    res = ''.join(random.choices(string.ascii_uppercase +
                             string.digits, k=N))
    res= res+ str(time.time())

    id= res
    text = q.text
    host= q.host
    t = threading.Thread(target=do_ML, args=(id,text,host))  
    t.start()


    
    return JSONResponse({"id":id})
      
   
    return "hello"

    
import requests 
    
def do_ML(id:str,long_text:str,host:str):
    try:
        
        r= generate_summary(long_text)
        data={"id":id,"result":r}
        x=requests.post(host,data= data)
        print(x.text)
        

    except:
        print("Error  occured id= "+id)