priyesh17 commited on
Commit
928eed8
·
verified ·
1 Parent(s): 377c0c5

Upload spacex_dash_app.py

Browse files
Files changed (1) hide show
  1. spacex_dash_app.py +86 -0
spacex_dash_app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import required libraries
2
+ import pandas as pd
3
+ import dash
4
+ import dash_html_components as html
5
+ import dash_core_components as dcc
6
+ from dash.dependencies import Input, Output, State
7
+ import plotly.graph_objects as go
8
+ import plotly.express as px
9
+ from dash import no_update
10
+
11
+ # Read the airline data into pandas dataframe
12
+ spacex_df = pd.read_csv("spacex_launch_dash.csv")
13
+ max_payload = spacex_df['Payload Mass (kg)'].max()
14
+ min_payload = spacex_df['Payload Mass (kg)'].min()
15
+
16
+ # Create a dash application
17
+ app = dash.Dash(__name__)
18
+
19
+ # Create an app layout
20
+ launch_sites = []
21
+ launch_sites.append({'label': 'All Sites', 'value': 'All Sites'})
22
+ for item in spacex_df["Launch Site"].value_counts().index:
23
+ launch_sites.append({'label': item, 'value': item})
24
+ app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
25
+ style={'textAlign': 'center', 'color': '#503D36',
26
+ 'font-size': 40}),
27
+ # TASK 1: Add a dropdown list to enable Launch Site selection
28
+ # The default select value is for ALL sites
29
+ dcc.Dropdown(id='site-dropdown', options = launch_sites, value = 'All Sites', placeholder = "Select a Launch Site here", searchable = True),
30
+ html.Br(),
31
+
32
+ # TASK 2: Add a pie chart to show the total successful launches count for all sites
33
+ # If a specific launch site was selected, show the Success vs. Failed counts for the site
34
+ html.Div(dcc.Graph(id='success-pie-chart')),
35
+ html.Br(),
36
+
37
+ html.P("Payload range (Kg):"),
38
+ # TASK 3: Add a slider to select payload range
39
+ dcc.RangeSlider(id='payload-slider', min = 0, max = 10000, step = 1000, value = [min_payload, max_payload], marks={ 2500: {'label': '2500 (Kg)'}, 5000: {'label': '5000 (Kg)'}, 7500: {'label': '7500 (Kg)'}}),
40
+
41
+ # TASK 4: Add a scatter chart to show the correlation between payload and launch success
42
+ html.Div(dcc.Graph(id='success-payload-scatter-chart')),
43
+ ])
44
+
45
+ # TASK 2:
46
+ # Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
47
+ @app.callback( Output(component_id='success-pie-chart', component_property='figure'),
48
+ Input(component_id='site-dropdown', component_property='value')
49
+ )
50
+ # Add computation to callback function and return graph
51
+ def select(inputt):
52
+ if inputt == 'All Sites':
53
+ new_df = spacex_df.groupby(['Launch Site'])["class"].sum().to_frame()
54
+ new_df = new_df.reset_index()
55
+ fig = px.pie(new_df, values='class', names='Launch Site', title='Total Success Launches by Site')
56
+ else:
57
+ new_df = spacex_df[spacex_df["Launch Site"] == inputt]["class"].value_counts().to_frame()
58
+ new_df["name"] = ["Failure", "Success"]
59
+ fig = px.pie(new_df, values='class', names='name', title='Total Success Launches for ' + inputt)
60
+ return fig
61
+
62
+ # TASK 4:
63
+ # Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
64
+ @app.callback( Output(component_id='success-payload-scatter-chart', component_property='figure'),
65
+ Input(component_id='site-dropdown', component_property='value'), Input(component_id='payload-slider', component_property='value')
66
+ )
67
+ def scatter(input1, input2):
68
+ print(input1)
69
+ print(input2)
70
+ if input1 == 'All Sites':
71
+ new_df = spacex_df
72
+ new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0]]
73
+ new_df3 = new_df2[new_df["Payload Mass (kg)"] <= input2[1]]
74
+ fig2 = px.scatter(new_df3, y="class", x="Payload Mass (kg)", color="Booster Version Category")
75
+ else:
76
+ new_df = spacex_df[spacex_df["Launch Site"] == input1]
77
+ new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0]]
78
+ new_df3 = new_df2[new_df["Payload Mass (kg)"] <= input2[1]]
79
+ #new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0] & new_df["Payload Mass (kg)"] <= input2[1]]
80
+ fig2 = px.scatter(new_df3, y="class", x="Payload Mass (kg)", color="Booster Version Category")
81
+ return fig2
82
+
83
+
84
+ # Run the app
85
+ if __name__ == '__main__':
86
+ app.run_server()