import streamlit as st import os # This is an open source developed by Facebook , helps us perform similariy search from langchain_community.vectorstores import FAISS from dotenv import load_dotenv from sentence_transformers import SentenceTransformer #for embedding load_dotenv() key = os.getenv("GOOGLE_API_KEY") os.environ["GOOGLE_API_KEY"]=key # st.set_page_config(page_title="Educate Kids", page_icon=":robot:") # st.header("Hey, Ask me something & I will give out similar things") model = SentenceTransformer('sentence-transformers/average_word_embeddings_glove.6B.300d') from langchain.document_loaders.csv_loader import CSVLoader loader = CSVLoader(file_path='myData.csv', csv_args={ 'delimiter': ',', 'quotechar': '"', 'fieldnames': ['Words'] }) data = loader.load() db = FAISS.from_documents(data, model) def get_text(): input_text = st.text_input("You: ", key= input) return input_text db = FAISS.from_documents(data, embeddings) #Function to receive input from user def get_text(): input_text = st.text_input("You: ", key= input) return input_text user_input=get_text() submit = st.button('Find similar Things') if submit: #fetch the similar text docs = db.similarity_search(user_input) # print(docs) st.subheader("Top Matches:") st.text(docs[0].page_content) st.text(docs[1].page_content) # print(data)