import streamlit as st import os from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from dotenv import load_dotenv load_dotenv() #customize the appearance of then Streamlit application's web page st.set_page_config(page_title="Educate Kids", page_icon=":robot:") st.header("Hey, Ask me something & I will give out similar things") #Initialize the OpenAIEmbeddings object embeddings = OpenAIEmbeddings() # import CSV file data from langchain.document_loaders.csv_loader import CSVLoader loader = CSVLoader(file_path='myData.csv', csv_args={ 'delimiter': ',', 'quotechar': '"', 'fieldnames': ['Words'] }) data = loader.load() #Display the data print(data) db = FAISS.from_documents(data, embeddings) #Function to receive input from user def get_text(): input_text = st.text_input("You: ", key= input) return input_text user_input=get_text() submit = st.button('Find similar Things') if submit: #fetch the similar text docs = db.similarity_search(user_input) # print(docs) st.subheader("Top Matches:") st.text(docs[0].page_content) st.text(docs[1].page_content)