priyam169 commited on
Commit
14601d2
·
verified ·
1 Parent(s): fa7521b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -12
app.py CHANGED
@@ -1,22 +1,21 @@
1
-
2
  import streamlit as st
3
  import os
4
- from langchain_openai import OpenAIEmbeddings
5
-
6
  from langchain_community.vectorstores import FAISS
7
 
8
  from dotenv import load_dotenv
9
-
10
  load_dotenv()
11
 
12
- #customize the appearance of then Streamlit application's web page
13
- st.set_page_config(page_title="Educate Kids", page_icon=":robot:")
14
- st.header("Hey, Ask me something & I will give out similar things")
 
 
 
 
15
 
16
- #Initialize the OpenAIEmbeddings object
17
- embeddings = OpenAIEmbeddings()
18
 
19
- # import CSV file data
20
  from langchain.document_loaders.csv_loader import CSVLoader
21
  loader = CSVLoader(file_path='myData.csv', csv_args={
22
  'delimiter': ',',
@@ -26,8 +25,11 @@ loader = CSVLoader(file_path='myData.csv', csv_args={
26
 
27
  data = loader.load()
28
 
29
- #Display the data
30
- print(data)
 
 
 
31
 
32
  db = FAISS.from_documents(data, embeddings)
33
 
@@ -48,3 +50,7 @@ if submit:
48
  st.subheader("Top Matches:")
49
  st.text(docs[0].page_content)
50
  st.text(docs[1].page_content)
 
 
 
 
 
 
1
  import streamlit as st
2
  import os
3
+ # This is an open source developed by Facebook , helps us perform similariy search
 
4
  from langchain_community.vectorstores import FAISS
5
 
6
  from dotenv import load_dotenv
7
+ from sentence_transformers import SentenceTransformer #for embedding
8
  load_dotenv()
9
 
10
+ key = os.getenv("GOOGLE_API_KEY")
11
+ os.environ["GOOGLE_API_KEY"]=key
12
+
13
+ # st.set_page_config(page_title="Educate Kids", page_icon=":robot:")
14
+ # st.header("Hey, Ask me something & I will give out similar things")
15
+
16
+ model = SentenceTransformer('sentence-transformers/average_word_embeddings_glove.6B.300d')
17
 
 
 
18
 
 
19
  from langchain.document_loaders.csv_loader import CSVLoader
20
  loader = CSVLoader(file_path='myData.csv', csv_args={
21
  'delimiter': ',',
 
25
 
26
  data = loader.load()
27
 
28
+ db = FAISS.from_documents(data, model)
29
+
30
+ def get_text():
31
+ input_text = st.text_input("You: ", key= input)
32
+ return input_text
33
 
34
  db = FAISS.from_documents(data, embeddings)
35
 
 
50
  st.subheader("Top Matches:")
51
  st.text(docs[0].page_content)
52
  st.text(docs[1].page_content)
53
+ # print(data)
54
+
55
+
56
+