from flask import Flask, request, jsonify # from pytrends.request import TrendReq # Uncomment and install if using real Google Trends import random import os app = Flask(__name__) # --- IMPORTANT: API KEY MANAGEMENT --- # For real external APIs (Google Trends, Twitter, etc.), you MUST store API keys # securely as environment variables in your Hugging Face Space settings. # Do NOT hardcode them here in production. # Example: # GOOGLE_TRENDS_API_KEY = os.environ.get("GOOGLE_TRENDS_API_KEY") # TWITTER_BEARER_TOKEN = os.environ.get("TWITTER_BEARER_TOKEN") @app.route('/api/get-trend-popularity', methods=['POST']) def get_trend_popularity(): """ Conceptual backend endpoint for real-world trend data integration. This function simulates fetching data from external APIs and calculating scores. """ data = request.get_json() trend_name = data.get('trendName', '') trend_description = data.get('trendDescription', '') if not trend_name: return jsonify({"error": "Trend name is required"}), 400 # --- REAL-WORLD EXTERNAL API CALLS (CONCEPTUAL) --- # In a real application, you would replace the simulated logic below # with actual calls to external APIs. # Example conceptual integration with Google Trends (requires pytrends library) # try: # pytrends_client = TrendReq(hl='en-US', tz=360) # keywords = [trend_name] # if trend_description: # keywords.append(trend_description.split(' ')[0]) # Use first word of desc as another keyword # pytrends_client.build_payload(keywords, cat=0, timeframe='today 3-m', geo='', gprop='') # trend_data = pytrends_client.interest_over_time() # if not trend_data.empty and trend_name in trend_data.columns: # search_interest = trend_data[trend_name].iloc[-1] # Get latest interest score # else: # search_interest = random.randint(1, 20) # Fallback if no data # except Exception as e: # print(f"Error fetching Google Trends data: {e}") # search_interest = random.randint(1, 20) # Fallback on error # Example conceptual integration with Social Media API (e.g., Twitter) # try: # # Use a library like `tweepy` or `python-twitter` # # response = twitter_api.search_recent_tweets(query=trend_name, tweet_fields=["public_metrics"]) # # social_mentions_count = response.meta.get('total_tweet_count', 0) # social_mentions_count = random.randint(50, 500) # Simulated # except Exception as e: # print(f"Error fetching Twitter data: {e}") # social_mentions_count = random.randint(10, 100) # Fallback # --- SIMULATED CALCULATION FOR PROTOTYPE --- # This part remains for the prototype to provide dynamic, but simulated, updates. # In a real scenario, these values would be derived from the actual API data. # Simulate a search popularity increase (e.g., 1-5 points) simulated_search_increase = random.randint(1, 5) # Simulate a small engagement boost (e.g., 0-3 points) simulated_engagement_boost = random.randint(0, 3) # Simulate a small positive sentiment boost (e.g., 0-2 points) simulated_sentiment_boost = random.randint(0, 2) # In a real system, you'd calculate these based on `search_interest`, `social_mentions_count`, etc. # For example: # search_popularity_increase = int(search_interest / 10) + random.randint(0,2) # engagement_boost = int(social_mentions_count / 100) + random.randint(0,1) # sentiment_boost = 1 if some_sentiment_analysis_is_positive else 0 return jsonify({ "newSearchPopularityIncrease": simulated_search_increase, "engagementBoost": simulated_engagement_boost, "sentimentBoost": simulated_sentiment_boost }), 200 if __name__ == '__main__': # This is for local development. Hugging Face Spaces will run your app # using their own server (e.g., Gunicorn/Uvicorn). app.run(debug=True, host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))