privateuserh commited on
Commit
722ebaf
·
verified ·
1 Parent(s): 4244309

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -0
app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ # from pytrends.request import TrendReq # Uncomment and install if using real Google Trends
3
+ import random
4
+ import os
5
+
6
+ app = Flask(__name__)
7
+
8
+ # --- IMPORTANT: API KEY MANAGEMENT ---
9
+ # For real external APIs (Google Trends, Twitter, etc.), you MUST store API keys
10
+ # securely as environment variables in your Hugging Face Space settings.
11
+ # Do NOT hardcode them here in production.
12
+ # Example:
13
+ # GOOGLE_TRENDS_API_KEY = os.environ.get("GOOGLE_TRENDS_API_KEY")
14
+ # TWITTER_BEARER_TOKEN = os.environ.get("TWITTER_BEARER_TOKEN")
15
+
16
+ @app.route('/api/get-trend-popularity', methods=['POST'])
17
+ def get_trend_popularity():
18
+ """
19
+ Conceptual backend endpoint for real-world trend data integration.
20
+ This function simulates fetching data from external APIs and calculating scores.
21
+ """
22
+ data = request.get_json()
23
+ trend_name = data.get('trendName', '')
24
+ trend_description = data.get('trendDescription', '')
25
+
26
+ if not trend_name:
27
+ return jsonify({"error": "Trend name is required"}), 400
28
+
29
+ # --- REAL-WORLD EXTERNAL API CALLS (CONCEPTUAL) ---
30
+ # In a real application, you would replace the simulated logic below
31
+ # with actual calls to external APIs.
32
+
33
+ # Example conceptual integration with Google Trends (requires pytrends library)
34
+ # try:
35
+ # pytrends_client = TrendReq(hl='en-US', tz=360)
36
+ # keywords = [trend_name]
37
+ # if trend_description:
38
+ # keywords.append(trend_description.split(' ')[0]) # Use first word of desc as another keyword
39
+ # pytrends_client.build_payload(keywords, cat=0, timeframe='today 3-m', geo='', gprop='')
40
+ # trend_data = pytrends_client.interest_over_time()
41
+ # if not trend_data.empty and trend_name in trend_data.columns:
42
+ # search_interest = trend_data[trend_name].iloc[-1] # Get latest interest score
43
+ # else:
44
+ # search_interest = random.randint(1, 20) # Fallback if no data
45
+ # except Exception as e:
46
+ # print(f"Error fetching Google Trends data: {e}")
47
+ # search_interest = random.randint(1, 20) # Fallback on error
48
+
49
+ # Example conceptual integration with Social Media API (e.g., Twitter)
50
+ # try:
51
+ # # Use a library like `tweepy` or `python-twitter`
52
+ # # response = twitter_api.search_recent_tweets(query=trend_name, tweet_fields=["public_metrics"])
53
+ # # social_mentions_count = response.meta.get('total_tweet_count', 0)
54
+ # social_mentions_count = random.randint(50, 500) # Simulated
55
+ # except Exception as e:
56
+ # print(f"Error fetching Twitter data: {e}")
57
+ # social_mentions_count = random.randint(10, 100) # Fallback
58
+
59
+ # --- SIMULATED CALCULATION FOR PROTOTYPE ---
60
+ # This part remains for the prototype to provide dynamic, but simulated, updates.
61
+ # In a real scenario, these values would be derived from the actual API data.
62
+
63
+ # Simulate a search popularity increase (e.g., 1-5 points)
64
+ simulated_search_increase = random.randint(1, 5)
65
+ # Simulate a small engagement boost (e.g., 0-3 points)
66
+ simulated_engagement_boost = random.randint(0, 3)
67
+ # Simulate a small positive sentiment boost (e.g., 0-2 points)
68
+ simulated_sentiment_boost = random.randint(0, 2)
69
+
70
+ # In a real system, you'd calculate these based on `search_interest`, `social_mentions_count`, etc.
71
+ # For example:
72
+ # search_popularity_increase = int(search_interest / 10) + random.randint(0,2)
73
+ # engagement_boost = int(social_mentions_count / 100) + random.randint(0,1)
74
+ # sentiment_boost = 1 if some_sentiment_analysis_is_positive else 0
75
+
76
+ return jsonify({
77
+ "newSearchPopularityIncrease": simulated_search_increase,
78
+ "engagementBoost": simulated_engagement_boost,
79
+ "sentimentBoost": simulated_sentiment_boost
80
+ }), 200
81
+
82
+ if __name__ == '__main__':
83
+ # This is for local development. Hugging Face Spaces will run your app
84
+ # using their own server (e.g., Gunicorn/Uvicorn).
85
+ app.run(debug=True, host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
86
+