Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
# from pytrends.request import TrendReq # Uncomment and install if using real Google Trends
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
|
6 |
+
app = Flask(__name__)
|
7 |
+
|
8 |
+
# --- IMPORTANT: API KEY MANAGEMENT ---
|
9 |
+
# For real external APIs (Google Trends, Twitter, etc.), you MUST store API keys
|
10 |
+
# securely as environment variables in your Hugging Face Space settings.
|
11 |
+
# Do NOT hardcode them here in production.
|
12 |
+
# Example:
|
13 |
+
# GOOGLE_TRENDS_API_KEY = os.environ.get("GOOGLE_TRENDS_API_KEY")
|
14 |
+
# TWITTER_BEARER_TOKEN = os.environ.get("TWITTER_BEARER_TOKEN")
|
15 |
+
|
16 |
+
@app.route('/api/get-trend-popularity', methods=['POST'])
|
17 |
+
def get_trend_popularity():
|
18 |
+
"""
|
19 |
+
Conceptual backend endpoint for real-world trend data integration.
|
20 |
+
This function simulates fetching data from external APIs and calculating scores.
|
21 |
+
"""
|
22 |
+
data = request.get_json()
|
23 |
+
trend_name = data.get('trendName', '')
|
24 |
+
trend_description = data.get('trendDescription', '')
|
25 |
+
|
26 |
+
if not trend_name:
|
27 |
+
return jsonify({"error": "Trend name is required"}), 400
|
28 |
+
|
29 |
+
# --- REAL-WORLD EXTERNAL API CALLS (CONCEPTUAL) ---
|
30 |
+
# In a real application, you would replace the simulated logic below
|
31 |
+
# with actual calls to external APIs.
|
32 |
+
|
33 |
+
# Example conceptual integration with Google Trends (requires pytrends library)
|
34 |
+
# try:
|
35 |
+
# pytrends_client = TrendReq(hl='en-US', tz=360)
|
36 |
+
# keywords = [trend_name]
|
37 |
+
# if trend_description:
|
38 |
+
# keywords.append(trend_description.split(' ')[0]) # Use first word of desc as another keyword
|
39 |
+
# pytrends_client.build_payload(keywords, cat=0, timeframe='today 3-m', geo='', gprop='')
|
40 |
+
# trend_data = pytrends_client.interest_over_time()
|
41 |
+
# if not trend_data.empty and trend_name in trend_data.columns:
|
42 |
+
# search_interest = trend_data[trend_name].iloc[-1] # Get latest interest score
|
43 |
+
# else:
|
44 |
+
# search_interest = random.randint(1, 20) # Fallback if no data
|
45 |
+
# except Exception as e:
|
46 |
+
# print(f"Error fetching Google Trends data: {e}")
|
47 |
+
# search_interest = random.randint(1, 20) # Fallback on error
|
48 |
+
|
49 |
+
# Example conceptual integration with Social Media API (e.g., Twitter)
|
50 |
+
# try:
|
51 |
+
# # Use a library like `tweepy` or `python-twitter`
|
52 |
+
# # response = twitter_api.search_recent_tweets(query=trend_name, tweet_fields=["public_metrics"])
|
53 |
+
# # social_mentions_count = response.meta.get('total_tweet_count', 0)
|
54 |
+
# social_mentions_count = random.randint(50, 500) # Simulated
|
55 |
+
# except Exception as e:
|
56 |
+
# print(f"Error fetching Twitter data: {e}")
|
57 |
+
# social_mentions_count = random.randint(10, 100) # Fallback
|
58 |
+
|
59 |
+
# --- SIMULATED CALCULATION FOR PROTOTYPE ---
|
60 |
+
# This part remains for the prototype to provide dynamic, but simulated, updates.
|
61 |
+
# In a real scenario, these values would be derived from the actual API data.
|
62 |
+
|
63 |
+
# Simulate a search popularity increase (e.g., 1-5 points)
|
64 |
+
simulated_search_increase = random.randint(1, 5)
|
65 |
+
# Simulate a small engagement boost (e.g., 0-3 points)
|
66 |
+
simulated_engagement_boost = random.randint(0, 3)
|
67 |
+
# Simulate a small positive sentiment boost (e.g., 0-2 points)
|
68 |
+
simulated_sentiment_boost = random.randint(0, 2)
|
69 |
+
|
70 |
+
# In a real system, you'd calculate these based on `search_interest`, `social_mentions_count`, etc.
|
71 |
+
# For example:
|
72 |
+
# search_popularity_increase = int(search_interest / 10) + random.randint(0,2)
|
73 |
+
# engagement_boost = int(social_mentions_count / 100) + random.randint(0,1)
|
74 |
+
# sentiment_boost = 1 if some_sentiment_analysis_is_positive else 0
|
75 |
+
|
76 |
+
return jsonify({
|
77 |
+
"newSearchPopularityIncrease": simulated_search_increase,
|
78 |
+
"engagementBoost": simulated_engagement_boost,
|
79 |
+
"sentimentBoost": simulated_sentiment_boost
|
80 |
+
}), 200
|
81 |
+
|
82 |
+
if __name__ == '__main__':
|
83 |
+
# This is for local development. Hugging Face Spaces will run your app
|
84 |
+
# using their own server (e.g., Gunicorn/Uvicorn).
|
85 |
+
app.run(debug=True, host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|
86 |
+
|