Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import uuid
|
|
| 4 |
import json
|
| 5 |
import time
|
| 6 |
import asyncio
|
|
|
|
| 7 |
from threading import Thread
|
| 8 |
|
| 9 |
import gradio as gr
|
|
@@ -12,6 +13,7 @@ import torch
|
|
| 12 |
import numpy as np
|
| 13 |
from PIL import Image
|
| 14 |
import edge_tts
|
|
|
|
| 15 |
|
| 16 |
from transformers import (
|
| 17 |
AutoModelForCausalLM,
|
|
@@ -21,8 +23,75 @@ from transformers import (
|
|
| 21 |
AutoProcessor,
|
| 22 |
)
|
| 23 |
from transformers.image_utils import load_image
|
|
|
|
| 24 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
DESCRIPTION = """
|
| 28 |
# QwQ Edge 💬
|
|
@@ -48,7 +117,7 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
| 48 |
|
| 49 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 50 |
|
| 51 |
-
# Load text-only model and tokenizer
|
| 52 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 53 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 54 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -58,11 +127,13 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 58 |
)
|
| 59 |
model.eval()
|
| 60 |
|
|
|
|
| 61 |
TTS_VOICES = [
|
| 62 |
"en-US-JennyNeural", # @tts1
|
| 63 |
"en-US-GuyNeural", # @tts2
|
| 64 |
]
|
| 65 |
|
|
|
|
| 66 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 67 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 68 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
@@ -88,14 +159,12 @@ def clean_chat_history(chat_history):
|
|
| 88 |
cleaned.append(msg)
|
| 89 |
return cleaned
|
| 90 |
|
| 91 |
-
# Environment variables and parameters for Stable Diffusion XL
|
| 92 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
| 93 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 94 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 95 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 96 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
| 97 |
|
| 98 |
-
# Load the SDXL pipeline
|
| 99 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 100 |
MODEL_ID_SD,
|
| 101 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
@@ -104,31 +173,21 @@ sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
| 104 |
).to(device)
|
| 105 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
| 106 |
|
| 107 |
-
# Ensure that the text encoder is in half-precision if using CUDA.
|
| 108 |
if torch.cuda.is_available():
|
| 109 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
| 110 |
|
| 111 |
-
# Optional: compile the model for speedup if enabled
|
| 112 |
if USE_TORCH_COMPILE:
|
| 113 |
sd_pipe.compile()
|
| 114 |
|
| 115 |
-
# Optional: offload parts of the model to CPU if needed
|
| 116 |
if ENABLE_CPU_OFFLOAD:
|
| 117 |
sd_pipe.enable_model_cpu_offload()
|
| 118 |
|
| 119 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 120 |
-
|
| 121 |
def save_image(img: Image.Image) -> str:
|
| 122 |
"""Save a PIL image with a unique filename and return the path."""
|
| 123 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 124 |
img.save(unique_name)
|
| 125 |
return unique_name
|
| 126 |
|
| 127 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 128 |
-
if randomize_seed:
|
| 129 |
-
seed = random.randint(0, MAX_SEED)
|
| 130 |
-
return seed
|
| 131 |
-
|
| 132 |
@spaces.GPU(duration=60, enable_queue=True)
|
| 133 |
def generate_image_fn(
|
| 134 |
prompt: str,
|
|
@@ -168,7 +227,6 @@ def generate_image_fn(
|
|
| 168 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 169 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
| 170 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 171 |
-
# Wrap the pipeline call in autocast if using CUDA
|
| 172 |
if device.type == "cuda":
|
| 173 |
with torch.autocast("cuda", dtype=torch.float16):
|
| 174 |
outputs = sd_pipe(**batch_options)
|
|
@@ -178,6 +236,23 @@ def generate_image_fn(
|
|
| 178 |
image_paths = [save_image(img) for img in images]
|
| 179 |
return image_paths, seed
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
@spaces.GPU
|
| 182 |
def generate(
|
| 183 |
input_dict: dict,
|
|
@@ -189,16 +264,34 @@ def generate(
|
|
| 189 |
repetition_penalty: float = 1.2,
|
| 190 |
):
|
| 191 |
"""
|
| 192 |
-
Generates chatbot responses with support for multimodal input, TTS,
|
|
|
|
|
|
|
| 193 |
Special commands:
|
| 194 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
| 195 |
- "@image": triggers image generation using the SDXL pipeline.
|
|
|
|
| 196 |
"""
|
| 197 |
text = input_dict["text"]
|
| 198 |
files = input_dict.get("files", [])
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
if text.strip().lower().startswith("@image"):
|
| 201 |
-
# Remove the "@image" tag and use the rest as prompt
|
| 202 |
prompt = text[len("@image"):].strip()
|
| 203 |
yield "Generating image..."
|
| 204 |
image_paths, used_seed = generate_image_fn(
|
|
@@ -214,10 +307,10 @@ def generate(
|
|
| 214 |
use_resolution_binning=True,
|
| 215 |
num_images=1,
|
| 216 |
)
|
| 217 |
-
# Yield the generated image so that the chat interface displays it.
|
| 218 |
yield gr.Image(image_paths[0])
|
| 219 |
-
return
|
| 220 |
|
|
|
|
| 221 |
tts_prefix = "@tts"
|
| 222 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 223 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
@@ -225,11 +318,9 @@ def generate(
|
|
| 225 |
if is_tts and voice_index:
|
| 226 |
voice = TTS_VOICES[voice_index - 1]
|
| 227 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
| 228 |
-
# Clear previous chat history for a fresh TTS request.
|
| 229 |
conversation = [{"role": "user", "content": text}]
|
| 230 |
else:
|
| 231 |
voice = None
|
| 232 |
-
# Remove any stray @tts tags and build the conversation history.
|
| 233 |
text = text.replace(tts_prefix, "").strip()
|
| 234 |
conversation = clean_chat_history(chat_history)
|
| 235 |
conversation.append({"role": "user", "content": text})
|
|
@@ -263,7 +354,6 @@ def generate(
|
|
| 263 |
time.sleep(0.01)
|
| 264 |
yield buffer
|
| 265 |
else:
|
| 266 |
-
|
| 267 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 268 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 269 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
@@ -292,7 +382,6 @@ def generate(
|
|
| 292 |
final_response = "".join(outputs)
|
| 293 |
yield final_response
|
| 294 |
|
| 295 |
-
# If TTS was requested, convert the final response to speech.
|
| 296 |
if is_tts and voice:
|
| 297 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 298 |
yield gr.Audio(output_file, autoplay=True)
|
|
@@ -308,12 +397,11 @@ demo = gr.ChatInterface(
|
|
| 308 |
],
|
| 309 |
examples=[
|
| 310 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
| 311 |
-
[
|
| 312 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
| 313 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
| 314 |
["Write a Python function to check if a number is prime."],
|
| 315 |
["@tts2 What causes rainbows to form?"],
|
| 316 |
-
|
| 317 |
],
|
| 318 |
cache_examples=False,
|
| 319 |
type="messages",
|
|
|
|
| 4 |
import json
|
| 5 |
import time
|
| 6 |
import asyncio
|
| 7 |
+
import tempfile
|
| 8 |
from threading import Thread
|
| 9 |
|
| 10 |
import gradio as gr
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
import edge_tts
|
| 16 |
+
import trimesh
|
| 17 |
|
| 18 |
from transformers import (
|
| 19 |
AutoModelForCausalLM,
|
|
|
|
| 23 |
AutoProcessor,
|
| 24 |
)
|
| 25 |
from transformers.image_utils import load_image
|
| 26 |
+
|
| 27 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 28 |
+
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
| 29 |
+
from diffusers.utils import export_to_ply
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 33 |
+
|
| 34 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 35 |
+
if randomize_seed:
|
| 36 |
+
seed = random.randint(0, MAX_SEED)
|
| 37 |
+
return seed
|
| 38 |
|
| 39 |
+
class Model:
|
| 40 |
+
def __init__(self):
|
| 41 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 42 |
+
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
| 43 |
+
self.pipe.to(self.device)
|
| 44 |
+
# Ensure the text encoder is in half precision to avoid dtype mismatches.
|
| 45 |
+
if torch.cuda.is_available():
|
| 46 |
+
try:
|
| 47 |
+
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
| 48 |
+
except AttributeError:
|
| 49 |
+
pass
|
| 50 |
+
|
| 51 |
+
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
| 52 |
+
self.pipe_img.to(self.device)
|
| 53 |
+
# Use getattr with a default value to avoid AttributeError if text_encoder is missing.
|
| 54 |
+
if torch.cuda.is_available():
|
| 55 |
+
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
| 56 |
+
if text_encoder_img is not None:
|
| 57 |
+
self.pipe_img.text_encoder = text_encoder_img.half()
|
| 58 |
+
|
| 59 |
+
def to_glb(self, ply_path: str) -> str:
|
| 60 |
+
mesh = trimesh.load(ply_path)
|
| 61 |
+
# Rotate the mesh for proper orientation
|
| 62 |
+
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
| 63 |
+
mesh.apply_transform(rot)
|
| 64 |
+
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
| 65 |
+
mesh.apply_transform(rot)
|
| 66 |
+
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
| 67 |
+
mesh.export(mesh_path.name, file_type="glb")
|
| 68 |
+
return mesh_path.name
|
| 69 |
+
|
| 70 |
+
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
|
| 71 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 72 |
+
images = self.pipe(
|
| 73 |
+
prompt,
|
| 74 |
+
generator=generator,
|
| 75 |
+
guidance_scale=guidance_scale,
|
| 76 |
+
num_inference_steps=num_steps,
|
| 77 |
+
output_type="mesh",
|
| 78 |
+
).images
|
| 79 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
| 80 |
+
export_to_ply(images[0], ply_path.name)
|
| 81 |
+
return self.to_glb(ply_path.name)
|
| 82 |
+
|
| 83 |
+
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
|
| 84 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 85 |
+
images = self.pipe_img(
|
| 86 |
+
image,
|
| 87 |
+
generator=generator,
|
| 88 |
+
guidance_scale=guidance_scale,
|
| 89 |
+
num_inference_steps=num_steps,
|
| 90 |
+
output_type="mesh",
|
| 91 |
+
).images
|
| 92 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
| 93 |
+
export_to_ply(images[0], ply_path.name)
|
| 94 |
+
return self.to_glb(ply_path.name)
|
| 95 |
|
| 96 |
DESCRIPTION = """
|
| 97 |
# QwQ Edge 💬
|
|
|
|
| 117 |
|
| 118 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 119 |
|
| 120 |
+
# Load the text-only model and tokenizer (for pure text chat)
|
| 121 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 122 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 123 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 127 |
)
|
| 128 |
model.eval()
|
| 129 |
|
| 130 |
+
# Voices for text-to-speech
|
| 131 |
TTS_VOICES = [
|
| 132 |
"en-US-JennyNeural", # @tts1
|
| 133 |
"en-US-GuyNeural", # @tts2
|
| 134 |
]
|
| 135 |
|
| 136 |
+
# Load multimodal processor and model (e.g. for OCR and image processing)
|
| 137 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 138 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 139 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 159 |
cleaned.append(msg)
|
| 160 |
return cleaned
|
| 161 |
|
|
|
|
| 162 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
| 163 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 164 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 165 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 166 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
| 167 |
|
|
|
|
| 168 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 169 |
MODEL_ID_SD,
|
| 170 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
|
| 173 |
).to(device)
|
| 174 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
| 175 |
|
|
|
|
| 176 |
if torch.cuda.is_available():
|
| 177 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
| 178 |
|
|
|
|
| 179 |
if USE_TORCH_COMPILE:
|
| 180 |
sd_pipe.compile()
|
| 181 |
|
|
|
|
| 182 |
if ENABLE_CPU_OFFLOAD:
|
| 183 |
sd_pipe.enable_model_cpu_offload()
|
| 184 |
|
|
|
|
|
|
|
| 185 |
def save_image(img: Image.Image) -> str:
|
| 186 |
"""Save a PIL image with a unique filename and return the path."""
|
| 187 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 188 |
img.save(unique_name)
|
| 189 |
return unique_name
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
@spaces.GPU(duration=60, enable_queue=True)
|
| 192 |
def generate_image_fn(
|
| 193 |
prompt: str,
|
|
|
|
| 227 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 228 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
| 229 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
|
|
|
| 230 |
if device.type == "cuda":
|
| 231 |
with torch.autocast("cuda", dtype=torch.float16):
|
| 232 |
outputs = sd_pipe(**batch_options)
|
|
|
|
| 236 |
image_paths = [save_image(img) for img in images]
|
| 237 |
return image_paths, seed
|
| 238 |
|
| 239 |
+
@spaces.GPU(duration=120, enable_queue=True)
|
| 240 |
+
def generate_3d_fn(
|
| 241 |
+
prompt: str,
|
| 242 |
+
seed: int = 1,
|
| 243 |
+
guidance_scale: float = 15.0,
|
| 244 |
+
num_steps: int = 64,
|
| 245 |
+
randomize_seed: bool = False,
|
| 246 |
+
):
|
| 247 |
+
"""
|
| 248 |
+
Generate a 3D model from text using the ShapE pipeline.
|
| 249 |
+
Returns a tuple of (glb_file_path, used_seed).
|
| 250 |
+
"""
|
| 251 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 252 |
+
model3d = Model()
|
| 253 |
+
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
| 254 |
+
return glb_path, seed
|
| 255 |
+
|
| 256 |
@spaces.GPU
|
| 257 |
def generate(
|
| 258 |
input_dict: dict,
|
|
|
|
| 264 |
repetition_penalty: float = 1.2,
|
| 265 |
):
|
| 266 |
"""
|
| 267 |
+
Generates chatbot responses with support for multimodal input, TTS, image generation,
|
| 268 |
+
and 3D model generation.
|
| 269 |
+
|
| 270 |
Special commands:
|
| 271 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
| 272 |
- "@image": triggers image generation using the SDXL pipeline.
|
| 273 |
+
- "@3d": triggers 3D model generation using the ShapE pipeline.
|
| 274 |
"""
|
| 275 |
text = input_dict["text"]
|
| 276 |
files = input_dict.get("files", [])
|
| 277 |
|
| 278 |
+
# --- 3D Generation branch ---
|
| 279 |
+
if text.strip().lower().startswith("@3d"):
|
| 280 |
+
prompt = text[len("@3d"):].strip()
|
| 281 |
+
yield "Generating 3D model..."
|
| 282 |
+
glb_path, used_seed = generate_3d_fn(
|
| 283 |
+
prompt=prompt,
|
| 284 |
+
seed=1,
|
| 285 |
+
guidance_scale=15.0,
|
| 286 |
+
num_steps=64,
|
| 287 |
+
randomize_seed=True,
|
| 288 |
+
)
|
| 289 |
+
# Instead of returning as a file, yield a 3D model component so it displays inline.
|
| 290 |
+
yield gr.Model3D(value=glb_path, label="3D Model")
|
| 291 |
+
return
|
| 292 |
+
|
| 293 |
+
# --- Image Generation branch ---
|
| 294 |
if text.strip().lower().startswith("@image"):
|
|
|
|
| 295 |
prompt = text[len("@image"):].strip()
|
| 296 |
yield "Generating image..."
|
| 297 |
image_paths, used_seed = generate_image_fn(
|
|
|
|
| 307 |
use_resolution_binning=True,
|
| 308 |
num_images=1,
|
| 309 |
)
|
|
|
|
| 310 |
yield gr.Image(image_paths[0])
|
| 311 |
+
return
|
| 312 |
|
| 313 |
+
# --- Text and TTS branch ---
|
| 314 |
tts_prefix = "@tts"
|
| 315 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 316 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
|
| 318 |
if is_tts and voice_index:
|
| 319 |
voice = TTS_VOICES[voice_index - 1]
|
| 320 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
|
| 321 |
conversation = [{"role": "user", "content": text}]
|
| 322 |
else:
|
| 323 |
voice = None
|
|
|
|
| 324 |
text = text.replace(tts_prefix, "").strip()
|
| 325 |
conversation = clean_chat_history(chat_history)
|
| 326 |
conversation.append({"role": "user", "content": text})
|
|
|
|
| 354 |
time.sleep(0.01)
|
| 355 |
yield buffer
|
| 356 |
else:
|
|
|
|
| 357 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 358 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 359 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
|
| 382 |
final_response = "".join(outputs)
|
| 383 |
yield final_response
|
| 384 |
|
|
|
|
| 385 |
if is_tts and voice:
|
| 386 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 387 |
yield gr.Audio(output_file, autoplay=True)
|
|
|
|
| 397 |
],
|
| 398 |
examples=[
|
| 399 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
| 400 |
+
["@3d A birthday cupcake with cherry"],
|
| 401 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
| 402 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
| 403 |
["Write a Python function to check if a number is prime."],
|
| 404 |
["@tts2 What causes rainbows to form?"],
|
|
|
|
| 405 |
],
|
| 406 |
cache_examples=False,
|
| 407 |
type="messages",
|