File size: 6,886 Bytes
a657082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import logging
import os
import subprocess
import sys
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
from urllib.request import urlopen, urlretrieve
import gradio as gr
from huggingface_hub import HfApi, whoami
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class Config:
"""Application configuration."""
hf_token: str
hf_username: str
transformers_version: str = "3.0.0"
hf_base_url: str = "https://huggingface.co"
transformers_base_url: str = (
"https://github.com/xenova/transformers.js/archive/refs"
)
repo_path: Path = Path("./transformers.js")
@classmethod
def from_env(cls) -> "Config":
"""Create config from environment variables and secrets."""
system_token = os.getenv("HF_TOKEN")
user_token = gr.session_state.get("user_hf_token")
if user_token:
hf_username = whoami(token=user_token)["name"]
else:
hf_username = (
os.getenv("SPACE_AUTHOR_NAME") or whoami(token=system_token)["name"]
)
hf_token = user_token or system_token
if not hf_token:
raise ValueError("HF_TOKEN must be set")
return cls(hf_token=hf_token, hf_username=hf_username)
class ModelConverter:
"""Handles model conversion and upload operations."""
def __init__(self, config: Config):
self.config = config
self.api = HfApi(token=config.hf_token)
def _get_ref_type(self) -> str:
"""Determine the reference type for the transformers repository."""
url = f"{self.config.transformers_base_url}/tags/{self.config.transformers_version}.tar.gz"
try:
return "tags" if urlopen(url).getcode() == 200 else "heads"
except Exception as e:
logger.warning(f"Failed to check tags, defaulting to heads: {e}")
return "heads"
def setup_repository(self) -> None:
"""Download and setup transformers repository if needed."""
if self.config.repo_path.exists():
return
ref_type = self._get_ref_type()
archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
try:
urlretrieve(archive_url, archive_path)
self._extract_archive(archive_path)
logger.info("Repository downloaded and extracted successfully")
except Exception as e:
raise RuntimeError(f"Failed to setup repository: {e}")
finally:
archive_path.unlink(missing_ok=True)
def _extract_archive(self, archive_path: Path) -> None:
"""Extract the downloaded archive."""
import tarfile
import tempfile
with tempfile.TemporaryDirectory() as tmp_dir:
with tarfile.open(archive_path, "r:gz") as tar:
tar.extractall(tmp_dir)
extracted_folder = next(Path(tmp_dir).iterdir())
extracted_folder.rename(self.config.repo_path)
def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
"""Convert the model to ONNX format."""
try:
result = subprocess.run(
[
sys.executable,
"-m",
"scripts.convert",
"--quantize",
"--model_id",
input_model_id,
],
cwd=self.config.repo_path,
capture_output=True,
text=True,
env={},
)
if result.returncode != 0:
return False, result.stderr
return True, result.stderr
except Exception as e:
return False, str(e)
def upload_model(self, input_model_id: str) -> Optional[str]:
"""Upload the converted model to Hugging Face under the onnx/ folder."""
try:
model_folder_path = self.config.repo_path / "models" / input_model_id
onnx_folder_path = model_folder_path / "onnx"
# Create the onnx folder if it doesn't exist
onnx_folder_path.mkdir(exist_ok=True)
# Move the converted model files to the onnx folder
for file in model_folder_path.iterdir():
if file.is_file() and file.suffix == ".onnx":
file.rename(onnx_folder_path / file.name)
# Upload the onnx folder to the same model path
self.api.upload_folder(
folder_path=str(onnx_folder_path), repo_id=input_model_id, path_in_repo="onnx"
)
return None
except Exception as e:
return str(e)
finally:
import shutil
shutil.rmtree(model_folder_path, ignore_errors=True)
def convert_and_upload_model(input_model_id: str, user_hf_token: str = None):
"""Function to handle model conversion and upload."""
try:
config = Config.from_env()
if user_hf_token:
gr.session_state["user_hf_token"] = user_hf_token
config = Config.from_env()
converter = ModelConverter(config)
converter.setup_repository()
if converter.api.repo_exists(input_model_id):
with gr.spinner("Converting model..."):
success, stderr = converter.convert_model(input_model_id)
if not success:
return f"Conversion failed: {stderr}"
gr.Info("Conversion successful!")
gr.Code(stderr)
with gr.spinner("Uploading model..."):
error = converter.upload_model(input_model_id)
if error:
return f"Upload failed: {error}"
gr.Info("Upload successful!")
return f"Model uploaded to {input_model_id}/onnx"
else:
return f"Model {input_model_id} does not exist on Hugging Face."
except Exception as e:
logger.exception("Application error")
return f"An error occurred: {str(e)}"
# Gradio Interface
iface = gr.Interface(
fn=convert_and_upload_model,
inputs=[
gr.Textbox(label="Hugging Face Model ID", placeholder="Enter the Hugging Face model ID to convert. Example: `EleutherAI/pythia-14m`"),
gr.Textbox(label="Hugging Face Write Token (Optional)", type="password", placeholder="Fill it if you want to upload the model under your account.")
],
outputs=gr.Textbox(label="Output"),
title="Convert a Hugging Face model to ONNX",
description="This tool converts a Hugging Face model to ONNX format and uploads it to the same model path under an `onnx/` folder."
)
if __name__ == "__main__":
iface.launch() |