import os import random import uuid import json import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler DESCRIPTIONx = """## STABLE HAMSTER""" # Use environment variables for flexibility MODEL_ID = os.getenv("MODEL_REPO") MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once # Determine device and load model outside of function for efficiency device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") pipe = StableDiffusionXLPipeline.from_pretrained( MODEL_ID, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_safetensors=True, add_watermarker=False, ).to(device) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Torch compile for potential speedup (experimental) if USE_TORCH_COMPILE: pipe.compile() # CPU offloading for larger RAM capacity (experimental) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() MAX_SEED = np.iinfo(np.int32).max def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU(duration=35, enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 1, width: int = 1024, height: int = 1024, guidance_scale: float = 3, num_inference_steps: int = 30, randomize_seed: bool = False, use_resolution_binning: bool = True, num_images: int = 1, # Number of images to generate progress=gr.Progress(track_tqdm=True), ): seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator(device=device).manual_seed(seed) # Improved options handling options = { "prompt": [prompt] * num_images, "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "generator": generator, "output_type": "pil", } # Use resolution binning for faster generation with less VRAM usage if use_resolution_binning: options["use_resolution_binning"] = True # Generate images potentially in batches images = [] for i in range(0, num_images, BATCH_SIZE): batch_options = options.copy() batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] if "negative_prompt" in batch_options: batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] images.extend(pipe(**batch_options).images) image_paths = [save_image(img) for img in images] return image_paths, seed examples = [ "a cat eating a piece of cheese", "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k", "Ironman VS Hulk, ultrarealistic", "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k", "An alien holding a sign board containing the word 'Flash', futuristic, neonpunk", "Kids going to school, Anime style" ] css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' # Define the content of index.html with a loading animation and delay index_html_content = """