|
import os |
|
import random |
|
import uuid |
|
import json |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler |
|
|
|
|
|
MODEL_ID = os.getenv("MODEL_ID", "Corcelio/mobius") |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
).to(device) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.compile() |
|
|
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU(duration=35, enable_queue=True) |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 1, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
num_inference_steps: int = 30, |
|
randomize_seed: bool = False, |
|
use_resolution_binning: bool = True, |
|
num_images: int = 1, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
options = { |
|
"prompt": [prompt] * num_images, |
|
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, |
|
"width": width, |
|
"height": height, |
|
"guidance_scale": guidance_scale, |
|
"num_inference_steps": num_inference_steps, |
|
"generator": generator, |
|
"output_type": "pil", |
|
} |
|
|
|
|
|
if use_resolution_binning: |
|
options["use_resolution_binning"] = True |
|
|
|
|
|
images = [] |
|
for i in range(0, num_images, BATCH_SIZE): |
|
batch_options = options.copy() |
|
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] |
|
if "negative_prompt" in batch_options: |
|
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] |
|
images.extend(pipe(**batch_options).images) |
|
|
|
image_paths = [save_image(img) for img in images] |
|
return image_paths, seed |
|
|
|
examples = [ |
|
"a cat eating a piece of cheese", |
|
"a ROBOT riding a BLUE horse on Mars, photorealistic, 4k", |
|
"Ironman VS Hulk, ultrarealistic", |
|
"Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k", |
|
"An alien holding a sign board containing the word 'Flash', futuristic, neonpunk", |
|
"Kids going to school, Anime style" |
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 700px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
.wheel-and-hamster { |
|
--dur: 1s; |
|
position: relative; |
|
width: 12em; |
|
height: 12em; |
|
font-size: 14px; |
|
} |
|
.wheel, |
|
.hamster, |
|
.hamster div, |
|
.spoke { |
|
position: absolute; |
|
} |
|
.wheel, |
|
.spoke { |
|
border-radius: 50%; |
|
top: 0; |
|
left: 0; |
|
width: 100%; |
|
height: 100%; |
|
} |
|
.wheel { |
|
background: radial-gradient(100% 100% at center,hsla(0,0%,60%,0) 47.8%,hsl(0,0%,60%) 48%); |
|
z-index: 2; |
|
} |
|
.hamster { |
|
animation: hamster var(--dur) ease-in-out infinite; |
|
top: 50%; |
|
left: calc(50% - 3.5em); |
|
width: 7em; |
|
height: 3.75em; |
|
transform: rotate(4deg) translate(-0.8em,1.85em); |
|
transform-origin: 50% 0; |
|
z-index: 1; |
|
} |
|
.hamster__head { |
|
animation: hamsterHead var(--dur) ease-in-out infinite; |
|
background: hsl(30,90%,55%); |
|
border-radius: 70% 30% 0 100% / 40% 25% 25% 60%; |
|
box-shadow: 0 -0.25em 0 hsl(30,90%,80%) inset, |
|
0.75em -1.55em 0 hsl(30,90%,90%) inset; |
|
top: 0; |
|
left: -2em; |
|
width: 2.75em; |
|
height: 2.5em; |
|
transform-origin: 100% 50%; |
|
} |
|
.hamster__ear { |
|
animation: hamsterEar var(--dur) ease-in-out infinite; |
|
background: hsl(0,90%,85%); |
|
border-radius: 50%; |
|
box-shadow: -0.25em 0 hsl(30,90%,55%) inset; |
|
top: -0.25em; |
|
right: -0.25em; |
|
width: 0.75em; |
|
height: 0.75em; |
|
transform-origin: 50% 75%; |
|
} |
|
.hamster__eye { |
|
animation: hamsterEye var(--dur) linear infinite; |
|
background-color: hsl(0,0%,0%); |
|
border-radius: 50%; |
|
top: 0.375em; |
|
left: 1.25em; |
|
width: 0.5em; |
|
height: 0.5em; |
|
} |
|
.hamster__nose { |
|
background: hsl(0,90%,75%); |
|
border-radius: 35% 65% 85% 15% / 70% 50% 50% 30%; |
|
top: 0.75em; |
|
left: 0; |
|
width: 0.2em; |
|
height: 0.25em; |
|
} |
|
.hamster__body { |
|
animation: hamsterBody var(--dur) ease-in-out infinite; |
|
background: hsl(30,90%,90%); |
|
border-radius: 50% 30% 50% 30% / 15% 60% 40% 40%; |
|
box-shadow: 0.1em 0.75em 0 hsl(30,90%,55%) inset, |
|
0.15em -0.5em 0 hsl(30,90%,80%) inset; |
|
top: 0.25em; |
|
left: 2em; |
|
width: 4.5em; |
|
height: 3em; |
|
transform-origin: 17% 50%; |
|
transform-style: preserve-3d; |
|
} |
|
.hamster__limb--fr, |
|
.hamster__limb--fl { |
|
clip-path: polygon(0 0,100% 0,70% 80%,60% 100%,0% 100%,40% 80%); |
|
top: 2em; |
|
left: 0.5em; |
|
width: 1em; |
|
height: 1.5em; |
|
transform-origin: 50% 0; |
|
} |
|
.hamster__limb--fr { |
|
animation: hamsterFRLimb var(--dur) linear infinite; |
|
background: linear-gradient(hsl(30,90%,80%) 80%,hsl(0,90%,75%) 80%); |
|
transform: rotate(15deg) translateZ(-1px); |
|
} |
|
.hamster__limb--fl { |
|
animation: hamsterFLLimb var(--dur) linear infinite; |
|
background: linear-gradient(hsl(30,90%,80%) 80%,hsl(0,90%,75%) 80%); |
|
transform: rotate(-60deg) translateZ(-1px); |
|
} |
|
.hamster__limb--br, |
|
.hamster__limb--bl { |
|
clip-path: polygon(0 0,100% 0,100% 30%,70% 80%,60% 100%,40% 100%,30% 80%); |
|
top: 2.3em; |
|
left: 2.8em; |
|
width: 1.25em; |
|
height: 2.5em; |
|
transform-origin: 50% 10%; |
|
} |
|
.hamster__limb--br { |
|
animation: hamsterBRLimb var(--dur) linear infinite; |
|
background: linear-gradient(hsl(0,90%,75%) 40%,hsl(30,90%,80%) 40%); |
|
transform: rotate(45deg) translateZ(-1px); |
|
} |
|
.hamster__limb--bl { |
|
animation: hamsterBLLimb var(--dur) linear infinite; |
|
background: linear-gradient(hsl(0,90%,75%) 40%,hsl(30,90%,80%) 40%); |
|
transform: rotate(-30deg) translateZ(-1px); |
|
} |
|
.hamster__tail { |
|
animation: hamsterTail var(--dur) linear infinite; |
|
background: hsl(0,90%,85%); |
|
border-radius: 0.25em 50% 50% 0.25em; |
|
box-shadow: 0.1em 0.5em 0 hsl(30,90%,55%) inset, |
|
0.1em -0.25em 0 hsl(30,90%,90%) inset; |
|
top: 3em; |
|
left: 6em; |
|
width: 0.75em; |
|
height: 0.75em; |
|
transform: rotate(30deg) translateZ(-1px); |
|
} |
|
.spoke { |
|
--s: 0.2; |
|
background: hsl(0,0%,100%); |
|
box-shadow: 0 0 0 0.2em hsl(0,0%,0%); |
|
left: calc(50% - var(--s)/2); |
|
width: var(--s); |
|
height: var(--s); |
|
} |
|
.spoke:nth-child(1) { |
|
--rotation: 15deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(2) { |
|
--rotation: 45deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(3) { |
|
--rotation: 75deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(4) { |
|
--rotation: 105deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(5) { |
|
--rotation: 135deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(6) { |
|
--rotation: 165deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(7) { |
|
--rotation: 195deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(8) { |
|
--rotation: 225deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(9) { |
|
--rotation: 255deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(10) { |
|
--rotation: 285deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(11) { |
|
--rotation: 315deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
.spoke:nth-child(12) { |
|
--rotation: 345deg; |
|
transform: rotate(var(--rotation)); |
|
} |
|
|
|
@keyframes hamster { |
|
50% { |
|
transform: rotate(-4deg) translate(-0.8em,1.85em); |
|
} |
|
} |
|
|
|
@keyframes hamsterHead { |
|
50% { |
|
transform: rotate(-8deg); |
|
} |
|
} |
|
|
|
@keyframes hamsterEye { |
|
50% { |
|
transform: translateY(0.1em); |
|
} |
|
} |
|
|
|
@keyframes hamsterEar { |
|
50% { |
|
transform: rotate(8deg); |
|
} |
|
} |
|
|
|
@keyframes hamsterBody { |
|
50% { |
|
transform: rotate(2deg); |
|
} |
|
} |
|
|
|
@keyframes hamsterFRLimb { |
|
8%,70% { |
|
transform: rotate(15deg) translateZ(-1px); |
|
} |
|
33% { |
|
transform: rotate(-60deg) translateZ(-1px); |
|
} |
|
83% { |
|
transform: rotate(45deg) translateZ(-1px); |
|
} |
|
} |
|
|
|
@keyframes hamsterFLLimb { |
|
8%,70% { |
|
transform: rotate(-60deg) translateZ(-1px); |
|
} |
|
33% { |
|
transform: rotate(15deg) translateZ(-1px); |
|
} |
|
83% { |
|
transform: rotate(-45deg) translateZ(-1px); |
|
} |
|
} |
|
|
|
@keyframes hamsterBRLimb { |
|
0%,50% { |
|
transform: rotate(45deg) translateZ(-1px); |
|
} |
|
25% { |
|
transform: rotate(-30deg) translateZ(-1px); |
|
} |
|
75% { |
|
transform: rotate(60deg) translateZ(-1px); |
|
} |
|
} |
|
|
|
@keyframes hamsterBLLimb { |
|
0%,50% { |
|
transform: rotate(-30deg) translateZ(-1px); |
|
} |
|
25% { |
|
transform: rotate(45deg) translateZ(-1px); |
|
} |
|
75% { |
|
transform: rotate(-45deg) translateZ(-1px); |
|
} |
|
} |
|
|
|
@keyframes hamsterTail { |
|
50% { |
|
transform: rotate(-30deg) translateZ(-1px); |
|
} |
|
} |
|
|
|
#wrapper { |
|
position: relative; |
|
height: 100vh; |
|
display: flex; |
|
justify-content: center; |
|
align-items: center; |
|
} |
|
.loading-container { |
|
position: relative; |
|
display: flex; |
|
justify-content: center; |
|
align-items: center; |
|
width: 100%; |
|
height: 100%; |
|
top: 50%; |
|
transform: translateY(-50%); |
|
} |
|
.hidden { |
|
display: none; |
|
} |
|
''' |
|
|
|
html = ''' |
|
<div id="wrapper"> |
|
<div class="loading-container"> |
|
<div class="wheel-and-hamster"> |
|
<div class="wheel"> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
<div class="spoke"></div> |
|
</div> |
|
<div class="hamster"> |
|
<div class="hamster__body"> |
|
<div class="hamster__head"> |
|
<div class="hamster__ear"></div> |
|
<div class="hamster__eye"></div> |
|
<div class="hamster__nose"></div> |
|
</div> |
|
<div class="hamster__limb hamster__limb--fr"></div> |
|
<div class="hamster__limb hamster__limb--fl"></div> |
|
<div class="hamster__limb hamster__limb--br"></div> |
|
<div class="hamster__limb hamster__limb--bl"></div> |
|
<div class="hamster__tail"></div> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
<script> |
|
// Wait for the Gradio app to load |
|
document.addEventListener("DOMContentLoaded", function() { |
|
const observer = new MutationObserver(function(mutationsList, observer) { |
|
for (const mutation of mutationsList) { |
|
if (mutation.type === "childList" && mutation.addedNodes.length > 0) { |
|
// Check if Gradio has loaded by looking for a specific element |
|
const gradioApp = document.querySelector("#root"); |
|
if (gradioApp) { |
|
// Hide the loading animation and observer |
|
document.querySelector(".loading-container").classList.add("hidden"); |
|
observer.disconnect(); |
|
} |
|
} |
|
} |
|
}); |
|
|
|
// Start observing the body for changes |
|
observer.observe(document.body, { childList: true, subtree: true }); |
|
}); |
|
</script> |
|
''' |
|
|
|
block = gr.Blocks(css=css) |
|
|
|
with block as demo: |
|
gr.HTML(html) |
|
with gr.Column(elem_id="main-app"): |
|
gr.Markdown( |
|
""" |
|
# Generate images with Stable Diffusion XL |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Enter your prompt", |
|
lines=1, |
|
) |
|
negative_text = gr.Textbox( |
|
label="Negative Prompt", |
|
placeholder="Enter negative prompt", |
|
lines=1, |
|
) |
|
negative_prompt_chk = gr.Checkbox( |
|
label="Use Negative Prompt", |
|
value=True |
|
) |
|
seed = gr.Number( |
|
label="Seed", |
|
value=1, |
|
precision=0 |
|
) |
|
randomize_seed = gr.Checkbox( |
|
label="Randomize Seed", |
|
value=False |
|
) |
|
width = gr.Slider( |
|
label="Width", |
|
value=1024, |
|
minimum=64, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=8 |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
value=1024, |
|
minimum=64, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=8 |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
value=3, |
|
minimum=0, |
|
maximum=50, |
|
step=0.5 |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of Inference Steps", |
|
value=30, |
|
minimum=1, |
|
maximum=100, |
|
step=1 |
|
) |
|
use_resolution_binning = gr.Checkbox( |
|
label="Use Resolution Binning", |
|
value=True |
|
) |
|
num_images = gr.Number( |
|
label="Number of Images to Generate", |
|
value=1, |
|
minimum=1, |
|
maximum=10, |
|
step=1 |
|
) |
|
generate_button = gr.Button(label="Generate Images") |
|
with gr.Column(): |
|
gr.Label(label="Examples:") |
|
for example in examples: |
|
gr.Label(label=f"- {example}") |
|
|
|
generated_images = gr.Image( |
|
label="Generated Images", |
|
type="PIL", |
|
source=None |
|
) |
|
|
|
def generate_images_interface(): |
|
args = { |
|
"prompt": text.value, |
|
"negative_prompt": negative_text.value if negative_prompt_chk.value else "", |
|
"use_negative_prompt": negative_prompt_chk.value, |
|
"seed": seed.value, |
|
"width": int(width.value), |
|
"height": int(height.value), |
|
"guidance_scale": float(guidance_scale.value), |
|
"num_inference_steps": int(num_inference_steps.value), |
|
"randomize_seed": randomize_seed.value, |
|
"use_resolution_binning": use_resolution_binning.value, |
|
"num_images": int(num_images.value), |
|
"progress": gr.Progress() |
|
} |
|
image_paths, _ = generate(**args) |
|
images = [Image.open(image_path) for image_path in image_paths] |
|
return images |
|
|
|
def on_generate_click(): |
|
generated_images.set_value(generate_images_interface()) |
|
|
|
gr.Interface( |
|
fn=on_generate_click, |
|
live=True, |
|
title="Diffusion Generator", |
|
description="Generate images using Stable Diffusion XL.", |
|
layout="vertical", |
|
blocking=True |
|
).launch() |
|
|