|
|
|
import os |
|
import random |
|
import uuid |
|
import json |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler |
|
from typing import Tuple |
|
|
|
|
|
bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) |
|
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) |
|
default_negative = os.getenv("default_negative","") |
|
|
|
def check_text(prompt, negative=""): |
|
for i in bad_words: |
|
if i in prompt: |
|
return True |
|
for i in bad_words_negative: |
|
if i in negative: |
|
return True |
|
return False |
|
|
|
style_list = [ |
|
{ |
|
"name": "3840 x 2160", |
|
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "2560 x 1440", |
|
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
] |
|
|
|
collage_style_list = [ |
|
|
|
|
|
{ |
|
"name": "B & W", |
|
"prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast", |
|
"negative_prompt": "colorful, vibrant, bright, flashy", |
|
}, |
|
|
|
{ |
|
"name": "Polaroid", |
|
"prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic", |
|
"negative_prompt": "digital, modern, low quality, blurry", |
|
}, |
|
|
|
{ |
|
"name": "Watercolor", |
|
"prompt": "watercolor collage of {prompt}. soft edges, translucent colors, painterly effects", |
|
"negative_prompt": "digital, sharp lines, solid colors", |
|
}, |
|
|
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting", |
|
"negative_prompt": "static, lifeless, mundane", |
|
}, |
|
|
|
{ |
|
"name": "Nostalgic", |
|
"prompt": "nostalgic collage of {prompt}. retro imagery, vintage objects, sentimental journey", |
|
"negative_prompt": "contemporary, futuristic, forward-looking", |
|
}, |
|
|
|
{ |
|
"name": "Vintage", |
|
"prompt": "vintage collage of {prompt}. aged paper, sepia tones, retro imagery, antique vibes", |
|
"negative_prompt": "modern, contemporary, futuristic, high-tech", |
|
}, |
|
|
|
{ |
|
"name": "Scrapbook", |
|
"prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles", |
|
"negative_prompt": "clean, digital, modern, low quality", |
|
}, |
|
|
|
{ |
|
"name": "NeoNGlow", |
|
"prompt": "neon glow collage of {prompt}. vibrant colors, glowing effects, futuristic vibes", |
|
"negative_prompt": "dull, muted colors, vintage, retro", |
|
}, |
|
|
|
{ |
|
"name": "Geometric", |
|
"prompt": "geometric collage of {prompt}. abstract shapes, colorful, sharp edges, modern design, high quality", |
|
"negative_prompt": "blurry, low quality, traditional, dull", |
|
}, |
|
{ |
|
"name": "Thematic", |
|
"prompt": "thematic collage of {prompt}. cohesive theme, well-organized, matching colors, creative layout", |
|
"negative_prompt": "random, messy, unorganized, clashing colors", |
|
}, |
|
|
|
{ |
|
"name": "Retro Pop", |
|
"prompt": "retro pop art collage of {prompt}. bold colors, comic book style, halftone dots, vintage ads", |
|
"negative_prompt": "subdued colors, minimalist, modern, subtle", |
|
}, |
|
|
|
|
|
{ |
|
"name": "No Style", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
collage_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in collage_style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
COLLAGE_STYLE_NAMES = list(collage_styles.keys()) |
|
DEFAULT_STYLE_NAME = "3840 x 2160" |
|
DEFAULT_COLLAGE_STYLE_NAME = "B & W" |
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: |
|
if style_name in styles: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
elif style_name in collage_styles: |
|
p, n = collage_styles.get(style_name, collage_styles[DEFAULT_COLLAGE_STYLE_NAME]) |
|
else: |
|
p, n = styles[DEFAULT_STYLE_NAME] |
|
|
|
if not negative: |
|
negative = "" |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
DESCRIPTION = """""" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
if torch.cuda.is_available(): |
|
pipe = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-3-medium", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
variant="fp16" |
|
).to(device) |
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
else: |
|
pipe.to(device) |
|
print("Loaded on Device!") |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
print("Model Compiled!") |
|
|
|
def save_image(img, path): |
|
img.save(path) |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU(enable_queue=True) |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
style: str = DEFAULT_STYLE_NAME, |
|
collage_style: str = DEFAULT_COLLAGE_STYLE_NAME, |
|
grid_size: str = "2x2", |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
randomize_seed: bool = False, |
|
use_resolution_binning: bool = True, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if check_text(prompt, negative_prompt): |
|
raise ValueError("Prompt contains restricted words.") |
|
|
|
if collage_style != "No Style": |
|
prompt, negative_prompt = apply_style(collage_style, prompt, negative_prompt) |
|
else: |
|
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) |
|
|
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = "" |
|
negative_prompt += default_negative |
|
|
|
grid_sizes = { |
|
"2x1": (2, 1), |
|
"1x2": (1, 2), |
|
"2x2": (2, 2), |
|
"2x3": (2, 3), |
|
"3x2": (3, 2), |
|
"1x1": (1, 1) |
|
} |
|
|
|
grid_size_x, grid_size_y = grid_sizes.get(grid_size, (2, 2)) |
|
num_images = grid_size_x * grid_size_y |
|
|
|
options = { |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"width": width, |
|
"height": height, |
|
"guidance_scale": guidance_scale, |
|
"num_inference_steps": 20, |
|
"generator": generator, |
|
"num_images_per_prompt": num_images, |
|
"use_resolution_binning": use_resolution_binning, |
|
"output_type": "pil", |
|
} |
|
|
|
torch.cuda.empty_cache() |
|
images = pipe(**options).images |
|
|
|
grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y)) |
|
|
|
for i, img in enumerate(images[:num_images]): |
|
grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height)) |
|
|
|
unique_name = str(uuid.uuid4()) + ".png" |
|
save_image(grid_img, unique_name) |
|
return [unique_name], seed |
|
|
|
examples = [ |
|
|
|
"Portrait of a beautiful woman in a hat, summer outfit, with freckles on her face, in a close up shot, with sunlight, outdoors, in soft light, with a beach background, looking at the camera, with high resolution photography, in the style of Hasselblad X2D50c --ar 85:128 --v 6.0 --style raw", |
|
"Flying food photography with [Two Burgers] as the main subject, Splashes of Toppings and Seasonings, [Rocket Lettuce], [Cheddar Flavored Cheese], [Onion], [Pickles], [Special Sauce], [Sesame Bun], [ sea salt crystals] ::3 Capturing the dynamic splashes of food using high-speed photography , photorealistic, surrealism style, [white background], trending background [clean], Minimalist ::2 [Cuware], [Table], [ Steam], [Smoke], [Vegetable Leaves], [Tomato] ::-0.5 Ad Posters, Pro-Grade Color Grading, Studio Lighting, Rim Lights, [Layered Comps], EOS-1D X Mark III, 500px, Behance, concept art" |
|
|
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 560px !important} |
|
h1{text-align:center} |
|
''' |
|
with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run") |
|
result = gr.Gallery(label="Grid", columns=1, preview=True) |
|
|
|
with gr.Row(visible=True): |
|
collage_style_selection = gr.Radio( |
|
show_label=True, |
|
container=True, |
|
interactive=True, |
|
choices=COLLAGE_STYLE_NAMES, |
|
value=DEFAULT_COLLAGE_STYLE_NAME, |
|
label="Collage Template", |
|
) |
|
with gr.Row(visible=True): |
|
grid_size_selection = gr.Dropdown( |
|
choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"], |
|
value="2x2", |
|
label="Grid Size" |
|
) |
|
with gr.Row(visible=True): |
|
style_selection = gr.Radio( |
|
show_label=True, |
|
container=True, |
|
interactive=True, |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
label="Style", |
|
) |
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", |
|
visible=True, |
|
) |
|
with gr.Row(): |
|
num_inference_steps = gr.Slider( |
|
label="Steps", |
|
minimum=10, |
|
maximum=30, |
|
step=1, |
|
value=15, |
|
) |
|
with gr.Row(): |
|
num_images_per_prompt = gr.Slider( |
|
label="Images", |
|
minimum=1, |
|
maximum=5, |
|
step=1, |
|
value=2, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
visible=True |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=512, |
|
maximum=2048, |
|
step=8, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=512, |
|
maximum=2048, |
|
step=8, |
|
value=1024, |
|
) |
|
|
|
|
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=20.0, |
|
step=0.1, |
|
value=6, |
|
) |
|
|
|
|
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
style_selection, |
|
collage_style_selection, |
|
grid_size_selection, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
randomize_seed, |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |