prithivMLmods commited on
Commit
e6d96df
·
verified ·
1 Parent(s): 1e0dffe

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -282
app.py DELETED
@@ -1,282 +0,0 @@
1
- import spaces
2
- import json
3
- import math
4
- import os
5
- import traceback
6
- from io import BytesIO
7
- from typing import Any, Dict, List, Optional, Tuple
8
- import re
9
- import time
10
- from threading import Thread
11
-
12
- import gradio as gr
13
- import requests
14
- import torch
15
- from PIL import Image
16
-
17
- from transformers import (
18
- Qwen2VLForConditionalGeneration,
19
- Qwen2_5_VLForConditionalGeneration,
20
- AutoModelForImageTextToText,
21
- AutoProcessor,
22
- TextIteratorStreamer,
23
- AutoModel,
24
- AutoTokenizer,
25
- )
26
-
27
- # --- Activate Forced Dark Mode ---
28
- js_func = """
29
- function refresh() {
30
- const url = new URL(window.location);
31
- if (url.searchParams.get('__theme') !== 'dark') {
32
- url.searchParams.set('__theme', 'dark');
33
- window.location.href = url.href;
34
- }
35
- }
36
- """
37
-
38
- # --- Constants and Model Setup ---
39
- MAX_INPUT_TOKEN_LENGTH = 4096
40
- device = "cuda" if torch.cuda.is_available() else "cpu"
41
-
42
- # --- Prompts for Different Tasks ---
43
- layout_prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
44
-
45
- 1. Bbox format: [x1, y1, x2, y2]
46
- 2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
47
- 3. Text Extraction & Formatting Rules:
48
- - For tables, provide the content in a structured JSON format.
49
- - For all other elements, provide the plain text.
50
- 4. Constraints:
51
- - The output must be the original text from the image.
52
- - All layout elements must be sorted according to human reading order.
53
- 5. Final Output: The entire output must be a single JSON object wrapped in ```json ... ```.
54
- """
55
-
56
- ocr_prompt = "Perform precise OCR on the image. Extract all text content, maintaining the original structure, paragraphs, and tables as formatted markdown."
57
-
58
- # --- Model Loading ---
59
- MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
60
- processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
61
- model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
62
- MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
63
- ).to(device).eval()
64
-
65
- MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
66
- processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
67
- model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
68
- MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
69
- ).to(device).eval()
70
-
71
- MODEL_ID_C = "nanonets/Nanonets-OCR-s"
72
- processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
73
- model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
74
- MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16
75
- ).to(device).eval()
76
-
77
- MODEL_ID_G = "echo840/MonkeyOCR"
78
- SUBFOLDER = "Recognition"
79
- processor_g = AutoProcessor.from_pretrained(
80
- MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
81
- )
82
- model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
83
- MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
84
- ).to(device).eval()
85
-
86
- MODEL_ID_I = "allenai/olmOCR-7B-0725"
87
- processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True)
88
- model_i = Qwen2_5_VLForConditionalGeneration.from_pretrained(
89
- MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
90
- ).to(device).eval()
91
-
92
- # Load typhoon-ocr-3b
93
- MODEL_ID_J = "scb10x/typhoon-ocr-3b"
94
- processor_j = AutoProcessor.from_pretrained(
95
- MODEL_ID_J,
96
- trust_remote_code=True
97
- )
98
- model_j = Qwen2_5_VLForConditionalGeneration.from_pretrained(
99
- MODEL_ID_J,
100
- trust_remote_code=True,
101
- torch_dtype=torch.float16
102
- ).to(device).eval()
103
-
104
- # --- Utility Functions ---
105
- def layoutjson2md(layout_data: List[Dict]) -> str:
106
- """Converts the structured JSON from Layout Analysis into formatted Markdown."""
107
- markdown_lines = []
108
- try:
109
- # Sort items by reading order (top-to-bottom, left-to-right)
110
- sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0,0,0,0])[1], x.get('bbox', [0,0,0,0])[0]))
111
- for item in sorted_items:
112
- category = item.get('category', '')
113
- text = item.get('text', '')
114
- if not text: continue
115
-
116
- if category == 'Title': markdown_lines.append(f"# {text}\n")
117
- elif category == 'Section-header': markdown_lines.append(f"## {text}\n")
118
- elif category == 'Table':
119
- # Handle structured table JSON
120
- if isinstance(text, dict) and 'header' in text and 'rows' in text:
121
- header = '| ' + ' | '.join(map(str, text['header'])) + ' |'
122
- separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |'
123
- rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']]
124
- markdown_lines.extend([header, separator] + rows)
125
- markdown_lines.append("\n")
126
- else: # Fallback for simple text
127
- markdown_lines.append(f"{text}\n")
128
- else:
129
- markdown_lines.append(f"{text}\n")
130
- except Exception as e:
131
- print(f"Error converting to markdown: {e}")
132
- return "### Error converting JSON to Markdown."
133
- return "\n".join(markdown_lines)
134
-
135
- # --- Core Application Logic ---
136
- @spaces.GPU
137
- def process_document_stream(model_name: str, task_choice: str, image: Image.Image, max_new_tokens: int):
138
- """
139
- Main generator function that handles both OCR and Layout Analysis tasks.
140
- """
141
- if image is None:
142
- yield "Please upload an image.", "Please upload an image.", None
143
- return
144
-
145
- # 1. Select prompt based on user's task choice
146
- text_prompt = ocr_prompt if task_choice == "Content Extraction" else layout_prompt
147
-
148
- # 2. Select model and processor
149
- if model_name == "Camel-Doc-OCR-080125": processor, model = processor_m, model_m
150
- elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t
151
- elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c
152
- elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g
153
- elif model_name == "olmOCR-7B-0725": processor, model = processor_i, model_i
154
- elif model_name == "typhoon-ocr-3b": processor, model = processor_j, model_j
155
- else:
156
- yield "Invalid model selected.", "Invalid model selected.", None
157
- return
158
-
159
- # 3. Prepare model inputs and streamer
160
- messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}]
161
- prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
162
- inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
163
- streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
164
- generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
165
-
166
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
167
- thread.start()
168
-
169
- # 4. Stream raw output to the UI in real-time
170
- buffer = ""
171
- for new_text in streamer:
172
- buffer += new_text
173
- buffer = buffer.replace("<|im_end|>", "")
174
- time.sleep(0.01)
175
- yield buffer, "⏳ Processing...", {"status": "streaming"}
176
-
177
- # 5. Post-process the final buffer based on the selected task
178
- if task_choice == "Content Extraction":
179
- # For OCR, the buffer is the final result.
180
- yield buffer, buffer, None
181
- else: # Layout Analysis
182
- try:
183
- json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
184
- if not json_match:
185
- raise json.JSONDecodeError("JSON object not found in output.", buffer, 0)
186
-
187
- json_str = json_match.group(1)
188
- layout_data = json.loads(json_str)
189
- markdown_content = layoutjson2md(layout_data)
190
-
191
- yield buffer, markdown_content, layout_data
192
- except Exception as e:
193
- error_md = f"❌ **Error:** Failed to parse Layout JSON.\n\n**Details:**\n`{str(e)}`"
194
- error_json = {"error": "ProcessingError", "details": str(e), "raw_output": buffer}
195
- yield buffer, error_md, error_json
196
-
197
- # --- Gradio UI Definition ---
198
- def create_gradio_interface():
199
- """Builds and returns the Gradio web interface."""
200
- css = """
201
- .main-container { max-width: 1400px; margin: 0 auto; }
202
- .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
203
- .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
204
- """
205
- with gr.Blocks(theme="bethecloud/storj_theme", css=css, js=js_func) as demo:
206
- gr.HTML("""
207
- <div class="title" style="text-align: center">
208
- <h1>OCR Comparator👨‍🏫</h1>
209
- <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
210
- Advanced Vision-Language Model for Image Content and Layout Extraction
211
- </p>
212
- </div>
213
- """)
214
-
215
- with gr.Row():
216
- # Left Column (Inputs)
217
- with gr.Column(scale=1):
218
- model_choice = gr.Dropdown(
219
- choices=["Camel-Doc-OCR-080125",
220
- "MonkeyOCR-Recognition",
221
- "olmOCR-7B-0725",
222
- "Nanonets-OCR-s",
223
- "Megalodon-OCR-Sync-0713",
224
- "typhoon-ocr-3b"
225
- ],
226
- label="Select Model", value="Nanonets-OCR-s"
227
- )
228
- task_choice = gr.Dropdown(
229
- choices=["Content Extraction", "Layout Analysis(.json)"],
230
- label="Select Task", value="Content Extraction"
231
- )
232
- image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
233
- with gr.Accordion("Advanced Settings", open=False):
234
- max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
235
-
236
- process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
237
- clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
238
-
239
- # Right Column (Outputs)
240
- with gr.Column(scale=2):
241
- with gr.Tabs() as tabs:
242
- with gr.Tab("📝 Extracted Content"):
243
- raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=13, show_copy_button=True)
244
- with gr.Row():
245
- examples = gr.Examples(
246
- examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
247
- inputs=image_input,
248
- label="Examples"
249
- )
250
- with gr.Tab("📰 README.md"):
251
- with gr.Accordion("(Formatted Result)", open=True):
252
- markdown_output = gr.Markdown(label="Formatted Markdown")
253
-
254
- with gr.Tab("📋 Layout Analysis Results"):
255
- json_output = gr.JSON(label="Structured Layout Data (JSON)")
256
-
257
- # Event Handlers
258
- def clear_all_outputs():
259
- return None, "Raw output will appear here.", "Formatted results will appear here.", None
260
-
261
- process_btn.click(
262
- fn=process_document_stream,
263
- inputs=[model_choice,
264
- task_choice,
265
- image_input,
266
- max_new_tokens],
267
- outputs=[raw_output_stream,
268
- markdown_output,
269
- json_output]
270
- )
271
- clear_btn.click(
272
- clear_all_outputs,
273
- outputs=[image_input,
274
- raw_output_stream,
275
- markdown_output,
276
- json_output]
277
- )
278
- return demo
279
-
280
- if __name__ == "__main__":
281
- demo = create_gradio_interface()
282
- demo.queue().launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)