prithivMLmods commited on
Commit
e16a202
·
verified ·
1 Parent(s): 0f8b807

upload app files (#6)

Browse files

- upload app files (c8b8bb709a62354bb27344a6ae186e04cbd3f3d9)

.gitattributes CHANGED
@@ -38,3 +38,4 @@ examples/2.png filter=lfs diff=lfs merge=lfs -text
38
  examples/3.png filter=lfs diff=lfs merge=lfs -text
39
  examples/4.png filter=lfs diff=lfs merge=lfs -text
40
  examples/5.png filter=lfs diff=lfs merge=lfs -text
 
 
38
  examples/3.png filter=lfs diff=lfs merge=lfs -text
39
  examples/4.png filter=lfs diff=lfs merge=lfs -text
40
  examples/5.png filter=lfs diff=lfs merge=lfs -text
41
+ examples/6.png filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import json
3
+ import math
4
+ import os
5
+ import traceback
6
+ from io import BytesIO
7
+ from typing import Any, Dict, List, Optional, Tuple
8
+ import re
9
+ import time
10
+ from threading import Thread
11
+ from io import BytesIO
12
+ import uuid
13
+ import tempfile
14
+
15
+ import gradio as gr
16
+ import requests
17
+ import torch
18
+ from PIL import Image
19
+ import fitz
20
+
21
+ from transformers import (
22
+ Qwen2_5_VLForConditionalGeneration,
23
+ Qwen2VLForConditionalGeneration,
24
+ AutoModelForCausalLM,
25
+ AutoModelForVision2Seq,
26
+ AutoModelForImageTextToText,
27
+ AutoModel,
28
+ AutoProcessor,
29
+ TextIteratorStreamer,
30
+ AutoTokenizer,
31
+ )
32
+
33
+ from transformers.image_utils import load_image
34
+
35
+ from reportlab.lib.pagesizes import A4
36
+ from reportlab.lib.styles import getSampleStyleSheet
37
+ from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
38
+ from reportlab.lib.units import inch
39
+
40
+ # --- Constants and Model Setup ---
41
+ MAX_INPUT_TOKEN_LENGTH = 4096
42
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
43
+
44
+ print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
45
+ print("torch.__version__ =", torch.__version__)
46
+ print("torch.version.cuda =", torch.version.cuda)
47
+ print("cuda available:", torch.cuda.is_available())
48
+ print("cuda device count:", torch.cuda.device_count())
49
+ if torch.cuda.is_available():
50
+ print("current device:", torch.cuda.current_device())
51
+ print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
52
+
53
+ print("Using device:", device)
54
+
55
+ # --- Model Loading ---
56
+ MODEL_ID_M = "LiquidAI/LFM2-VL-450M"
57
+ processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
58
+ model_m = AutoModelForImageTextToText.from_pretrained(
59
+ MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
60
+ ).to(device).eval()
61
+
62
+ MODEL_ID_T = "LiquidAI/LFM2-VL-1.6B"
63
+ processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
64
+ model_t = AutoModelForImageTextToText.from_pretrained(
65
+ MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
66
+ ).to(device).eval()
67
+
68
+ MODEL_ID_C = "HuggingFaceTB/SmolVLM-Instruct-250M"
69
+ processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
70
+ model_c = AutoModelForVision2Seq.from_pretrained(
71
+ MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16, _attn_implementation="flash_attention_2"
72
+ ).to(device).eval()
73
+
74
+ MODEL_ID_G = "echo840/MonkeyOCR-pro-1.2B"
75
+ SUBFOLDER = "Recognition"
76
+ processor_g = AutoProcessor.from_pretrained(
77
+ MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
78
+ )
79
+ model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
80
+ MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
81
+ ).to(device).eval()
82
+
83
+ MODEL_ID_I = "UCSC-VLAA/VLAA-Thinker-Qwen2VL-2B"
84
+ processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True)
85
+ model_i = Qwen2VLForConditionalGeneration.from_pretrained(
86
+ MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
87
+ ).to(device).eval()
88
+
89
+ MODEL_ID_A = "nanonets/Nanonets-OCR-s"
90
+ processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True)
91
+ model_a = Qwen2_5_VLForConditionalGeneration.from_pretrained(
92
+ MODEL_ID_A, trust_remote_code=True, torch_dtype=torch.float16
93
+ ).to(device).eval()
94
+
95
+ MODEL_ID_X = "prithivMLmods/Megalodon-OCR-Sync-0713"
96
+ processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
97
+ model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
98
+ MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16
99
+ ).to(device).eval()
100
+
101
+ MODEL_ID_Z = "Vchitect/ShotVL-3B"
102
+ processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
103
+ model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
104
+ MODEL_ID_Z, trust_remote_code=True, torch_dtype=torch.float16
105
+ ).to(device).eval()
106
+
107
+ # --- Moondream2 Model Loading ---
108
+ MODEL_ID_MD = "vikhyatk/moondream2"
109
+ REVISION_MD = "2025-06-21"
110
+ moondream = AutoModelForCausalLM.from_pretrained(
111
+ MODEL_ID_MD,
112
+ revision=REVISION_MD,
113
+ trust_remote_code=True,
114
+ torch_dtype=torch.float16,
115
+ device_map={"": "cuda"},
116
+ )
117
+ tokenizer_md = AutoTokenizer.from_pretrained(MODEL_ID_MD, revision=REVISION_MD)
118
+
119
+ # --- Qwen2.5-VL-3B-Abliterated-Caption-it ---
120
+ MODEL_ID_N = "prithivMLmods/Qwen2.5-VL-3B-Abliterated-Caption-it"
121
+ processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
122
+ model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
123
+ MODEL_ID_N, trust_remote_code=True, torch_dtype=torch.float16
124
+ ).to(device).eval()
125
+
126
+ # --- LMM-R1-MGT-PerceReason ---
127
+ MODEL_ID_F = "VLM-Reasoner/LMM-R1-MGT-PerceReason"
128
+ processor_f = AutoProcessor.from_pretrained(MODEL_ID_F, trust_remote_code=True)
129
+ model_f = Qwen2_5_VLForConditionalGeneration.from_pretrained(
130
+ MODEL_ID_F, trust_remote_code=True, torch_dtype=torch.float16
131
+ ).to(device).eval()
132
+
133
+ # TencentBAC/TBAC-VLR1-3B
134
+ MODEL_ID_G = "TencentBAC/TBAC-VLR1-3B"
135
+ processor_g = AutoProcessor.from_pretrained(MODEL_ID_G, trust_remote_code=True)
136
+ model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
137
+ MODEL_ID_G, trust_remote_code=True, torch_dtype=torch.float16
138
+ ).to(device).eval()
139
+
140
+ # OCRFlux-3B
141
+ MODEL_ID_V = "ChatDOC/OCRFlux-3B"
142
+ processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
143
+ model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
144
+ MODEL_ID_V, trust_remote_code=True, torch_dtype=torch.float16
145
+ ).to(device).eval()
146
+
147
+ # --- PDF Generation and Preview Utility Function ---
148
+ def generate_and_preview_pdf(image: Image.Image, text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str):
149
+ """
150
+ Generates a PDF, saves it, and then creates image previews of its pages.
151
+ Returns the path to the PDF and a list of paths to the preview images.
152
+ """
153
+ if image is None or not text_content or not text_content.strip():
154
+ raise gr.Error("Cannot generate PDF. Image or text content is missing.")
155
+
156
+ # --- 1. Generate the PDF ---
157
+ temp_dir = tempfile.gettempdir()
158
+ pdf_filename = os.path.join(temp_dir, f"output_{uuid.uuid4()}.pdf")
159
+ doc = SimpleDocTemplate(
160
+ pdf_filename,
161
+ pagesize=A4,
162
+ rightMargin=inch, leftMargin=inch,
163
+ topMargin=inch, bottomMargin=inch
164
+ )
165
+ styles = getSampleStyleSheet()
166
+ style_normal = styles["Normal"]
167
+ style_normal.fontSize = int(font_size)
168
+ style_normal.leading = int(font_size) * line_spacing
169
+ style_normal.alignment = {"Left": 0, "Center": 1, "Right": 2, "Justified": 4}[alignment]
170
+
171
+ story = []
172
+
173
+ img_buffer = BytesIO()
174
+ image.save(img_buffer, format='PNG')
175
+ img_buffer.seek(0)
176
+
177
+ page_width, _ = A4
178
+ available_width = page_width - 2 * inch
179
+ image_widths = {
180
+ "Small": available_width * 0.3,
181
+ "Medium": available_width * 0.6,
182
+ "Large": available_width * 0.9,
183
+ }
184
+ img_width = image_widths[image_size]
185
+ img = RLImage(img_buffer, width=img_width, height=image.height * (img_width / image.width))
186
+ story.append(img)
187
+ story.append(Spacer(1, 12))
188
+
189
+ cleaned_text = re.sub(r'#+\s*', '', text_content).replace("*", "")
190
+ text_paragraphs = cleaned_text.split('\n')
191
+
192
+ for para in text_paragraphs:
193
+ if para.strip():
194
+ story.append(Paragraph(para, style_normal))
195
+
196
+ doc.build(story)
197
+
198
+ # --- 2. Render PDF pages as images for preview ---
199
+ preview_images = []
200
+ try:
201
+ pdf_doc = fitz.open(pdf_filename)
202
+ for page_num in range(len(pdf_doc)):
203
+ page = pdf_doc.load_page(page_num)
204
+ pix = page.get_pixmap(dpi=150)
205
+ preview_img_path = os.path.join(temp_dir, f"preview_{uuid.uuid4()}_p{page_num}.png")
206
+ pix.save(preview_img_path)
207
+ preview_images.append(preview_img_path)
208
+ pdf_doc.close()
209
+ except Exception as e:
210
+ print(f"Error generating PDF preview: {e}")
211
+
212
+ return pdf_filename, preview_images
213
+
214
+
215
+ # --- Core Application Logic ---
216
+ @spaces.GPU
217
+ def process_document_stream(
218
+ model_name: str,
219
+ image: Image.Image,
220
+ prompt_input: str,
221
+ max_new_tokens: int,
222
+ temperature: float,
223
+ top_p: float,
224
+ top_k: int,
225
+ repetition_penalty: float
226
+ ):
227
+ """
228
+ Main generator function that handles model inference tasks with advanced generation parameters.
229
+ """
230
+ if image is None:
231
+ yield "Please upload an image.", ""
232
+ return
233
+ if not prompt_input or not prompt_input.strip():
234
+ yield "Please enter a prompt.", ""
235
+ return
236
+
237
+ if model_name == "Moondream2(vision)":
238
+ image_embeds = moondream.encode_image(image)
239
+ answer = moondream.answer_question(
240
+ image_embeds=image_embeds,
241
+ question=prompt_input,
242
+ tokenizer=tokenizer_md
243
+ )
244
+ yield answer, answer
245
+ return
246
+
247
+ if model_name == "LFM2-VL-450M(fast)": processor, model = processor_m, model_m
248
+ elif model_name == "LFM2-VL-1.6B(fast)": processor, model = processor_t, model_t
249
+ elif model_name == "ShotVL-3B(cinematic)": processor, model = processor_z, model_z
250
+ elif model_name == "SmolVLM-Instruct-250M(smol)": processor, model = processor_c, model_c
251
+ elif model_name == "MonkeyOCR-pro-1.2B(ocr)": processor, model = processor_g, model_g
252
+ elif model_name == "VLAA-Thinker-Qwen2VL-2B(reason)": processor, model = processor_i, model_i
253
+ elif model_name == "Nanonets-OCR-s(ocr)": processor, model = processor_a, model_a
254
+ elif model_name == "Megalodon-OCR-Sync-0713(ocr)": processor, model = processor_x, model_x
255
+ elif model_name == "Qwen2.5-VL-3B-Abliterated-Caption-it(caption)": processor, model = processor_n, model_n
256
+ elif model_name == "LMM-R1-MGT-PerceReason(reason)": processor, model = processor_f, model_f
257
+ elif model_name == "TBAC-VLR1-3B(open-r1)": processor, model = processor_g, model_g
258
+ elif model_name == "OCRFlux-3B(ocr)": processor, model = processor_v, modelv
259
+ else:
260
+ yield "Invalid model selected.", ""
261
+ return
262
+
263
+ messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt_input}]}]
264
+ prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
265
+ inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
266
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
267
+
268
+ generation_kwargs = {
269
+ **inputs,
270
+ "streamer": streamer,
271
+ "max_new_tokens": max_new_tokens,
272
+ "temperature": temperature,
273
+ "top_p": top_p,
274
+ "top_k": top_k,
275
+ "repetition_penalty": repetition_penalty,
276
+ "do_sample": True
277
+ }
278
+
279
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
280
+ thread.start()
281
+
282
+ buffer = ""
283
+ for new_text in streamer:
284
+ buffer += new_text
285
+ buffer = buffer.replace("<|im_end|>", "")
286
+ time.sleep(0.01)
287
+ yield buffer , buffer
288
+
289
+ yield buffer, buffer
290
+
291
+
292
+ # --- Gradio UI Definition ---
293
+ def create_gradio_interface():
294
+ """Builds and returns the Gradio web interface."""
295
+ css = """
296
+ .main-container { max-width: 1400px; margin: 0 auto; }
297
+ .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
298
+ .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
299
+ #gallery { min-height: 400px; }
300
+ """
301
+ with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
302
+ gr.HTML("""
303
+ <div class="title" style="text-align: center">
304
+ <h1>Tiny VLMs Lab🧪</h1>
305
+ <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
306
+ Advanced Vision-Language Model for Image Content and Layout Extraction
307
+ </p>
308
+ </div>
309
+ """)
310
+
311
+ with gr.Row():
312
+ # Left Column (Inputs)
313
+ with gr.Column(scale=1):
314
+ model_choice = gr.Dropdown(
315
+ choices=["LFM2-VL-450M(fast)", "LFM2-VL-1.6B(fast)", "SmolVLM-Instruct-250M(smol)", "Moondream2(vision)", "ShotVL-3B(cinematic)", "Megalodon-OCR-Sync-0713(ocr)",
316
+ "VLAA-Thinker-Qwen2VL-2B(reason)", "MonkeyOCR-pro-1.2B(ocr)", "Qwen2.5-VL-3B-Abliterated-Caption-it(caption)", "Nanonets-OCR-s(ocr)",
317
+ "LMM-R1-MGT-PerceReason(reason)", "TBAC-VLR1-3B(open-r1)", "OCRFlux-3B(ocr)"],
318
+ label="Select Model", value= "LFM2-VL-450M(fast)"
319
+ )
320
+ prompt_input = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query", value="Describe the image!")
321
+ image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
322
+
323
+ with gr.Accordion("Advanced Settings", open=False):
324
+ max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
325
+ temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
326
+ top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
327
+ top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
328
+ repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
329
+
330
+ gr.Markdown("### PDF Export Settings")
331
+ font_size = gr.Dropdown(choices=["8", "10", "12", "14", "16", "18"], value="12", label="Font Size")
332
+ line_spacing = gr.Dropdown(choices=[1.0, 1.15, 1.5, 2.0], value=1.15, label="Line Spacing")
333
+ alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment")
334
+ image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF")
335
+
336
+ process_btn = gr.Button("🚀 Process Image", variant="primary", elem_classes=["process-button"], size="lg")
337
+ clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
338
+
339
+ # Right Column (Outputs)
340
+ with gr.Column(scale=2):
341
+ with gr.Tabs() as tabs:
342
+ with gr.Tab("📝 Extracted Content"):
343
+ raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True)
344
+ with gr.Row():
345
+ examples = gr.Examples(
346
+ examples=["examples/1.png", "examples/2.png", "examples/3.png",
347
+ "examples/4.png", "examples/5.png", "examples/6.png"],
348
+ inputs=image_input, label="Examples"
349
+ )
350
+ gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/OCR-Comparator/discussions)")
351
+
352
+ with gr.Tab("📰 README.md"):
353
+ with gr.Accordion("(Result.md)", open=True):
354
+ markdown_output = gr.Markdown()
355
+
356
+ with gr.Tab("📋 PDF Preview"):
357
+ generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary")
358
+ pdf_output_file = gr.File(label="Download Generated PDF", interactive=False)
359
+ pdf_preview_gallery = gr.Gallery(label="PDF Page Preview", show_label=True, elem_id="gallery", columns=2, object_fit="contain", height="auto")
360
+
361
+ # Event Handlers
362
+ def clear_all_outputs():
363
+ return None, "", "Raw output will appear here.", "", None, None
364
+
365
+ process_btn.click(
366
+ fn=process_document_stream,
367
+ inputs=[model_choice, image_input, prompt_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
368
+ outputs=[raw_output_stream, markdown_output]
369
+ )
370
+
371
+ generate_pdf_btn.click(
372
+ fn=generate_and_preview_pdf,
373
+ inputs=[image_input, raw_output_stream, font_size, line_spacing, alignment, image_size],
374
+ outputs=[pdf_output_file, pdf_preview_gallery]
375
+ )
376
+
377
+ clear_btn.click(
378
+ clear_all_outputs,
379
+ outputs=[image_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery]
380
+ )
381
+ return demo
382
+
383
+ if __name__ == "__main__":
384
+ demo = create_gradio_interface()
385
+ demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True)
examples/1.png ADDED

Git LFS Details

  • SHA256: 10b27eea33a5271baed5bf6c7f36477840d5501025a1f0b0503eeaeff9101876
  • Pointer size: 131 Bytes
  • Size of remote file: 147 kB
examples/2.png ADDED

Git LFS Details

  • SHA256: fceb660db1740cc36569da400afadbafaafed6da32a4343924585e4524f06ab2
  • Pointer size: 131 Bytes
  • Size of remote file: 169 kB
examples/3.png ADDED

Git LFS Details

  • SHA256: 83dd50f7cdd5d7395bf2bd971c70a63318f2a3bfecd415395eaf78b38a171bf9
  • Pointer size: 131 Bytes
  • Size of remote file: 202 kB
examples/4.png ADDED

Git LFS Details

  • SHA256: e5d6ac2435a17e397d0b0d50de191bc67260b81dbd116d9aff8c925d19a55b43
  • Pointer size: 131 Bytes
  • Size of remote file: 118 kB
examples/5.png ADDED

Git LFS Details

  • SHA256: bbd0c1abaa36c1cac31a7e809a2a6668da70d5017426ca146fc5971eb1dac86f
  • Pointer size: 131 Bytes
  • Size of remote file: 179 kB
examples/6.png ADDED

Git LFS Details

  • SHA256: a0ecee24d27fe1acfd0641dbc046ef086db3289c84bd37ba5f738b3c8e3fa68c
  • Pointer size: 131 Bytes
  • Size of remote file: 161 kB
pre-requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ pip>=23.0.0
requirements.txt ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ git+https://github.com/Dao-AILab/flash-attention.git
2
+ git+https://github.com/huggingface/transformers.git
3
+ git+https://github.com/huggingface/accelerate.git
4
+ git+https://github.com/huggingface/peft.git
5
+ transformers-stream-generator
6
+ huggingface_hub
7
+ albumentations
8
+ pyvips-binary
9
+ qwen-vl-utils
10
+ sentencepiece
11
+ opencv-python
12
+ docling-core
13
+ python-docx
14
+ torchvision
15
+ safetensors
16
+ num2words
17
+ reportlab
18
+ xformers
19
+ requests
20
+ pymupdf
21
+ hf_xet
22
+ spaces
23
+ pyvips
24
+ pillow
25
+ gradio
26
+ einops
27
+ torch
28
+ fpdf
29
+ timm
30
+ av