prithivMLmods commited on
Commit
0ef351a
·
verified ·
1 Parent(s): 4f2a886

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -313
app.py DELETED
@@ -1,313 +0,0 @@
1
- import spaces
2
- import json
3
- import math
4
- import os
5
- import traceback
6
- from io import BytesIO
7
- from typing import Any, Dict, List, Optional, Tuple
8
- import re
9
- import time
10
- from threading import Thread
11
-
12
- import gradio as gr
13
- import requests
14
- import torch
15
- from PIL import Image
16
-
17
- from transformers import (
18
- Qwen2VLForConditionalGeneration,
19
- Qwen2_5_VLForConditionalGeneration,
20
- AutoModelForImageTextToText,
21
- AutoProcessor,
22
- TextIteratorStreamer,
23
- AutoModel,
24
- AutoTokenizer,
25
- )
26
-
27
- from transformers.image_utils import load_image
28
-
29
- # --- Constants and Model Setup ---
30
- MAX_INPUT_TOKEN_LENGTH = 4096
31
- # Note: The following line correctly falls back to CPU if CUDA is not available.
32
- # Let the environment (e.g., Hugging Face Spaces) determine the device.
33
- # This avoids conflicts with the CUDA environment setup by the platform.
34
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
35
-
36
- print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
37
- print("torch.__version__ =", torch.__version__)
38
- print("torch.version.cuda =", torch.version.cuda)
39
- print("cuda available:", torch.cuda.is_available())
40
- print("cuda device count:", torch.cuda.device_count())
41
- if torch.cuda.is_available():
42
- print("current device:", torch.cuda.current_device())
43
- print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
44
-
45
- print("Using device:", device)
46
-
47
- # --- Model Loading ---
48
-
49
- # --- Prompts for Different Tasks ---
50
- layout_prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
51
-
52
- 1. Bbox format: [x1, y1, x2, y2]
53
- 2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
54
- 3. Text Extraction & Formatting Rules:
55
- - For tables, provide the content in a structured JSON format.
56
- - For all other elements, provide the plain text.
57
- 4. Constraints:
58
- - The output must be the original text from the image.
59
- - All layout elements must be sorted according to human reading order.
60
- 5. Final Output: The entire output must be a single JSON object wrapped in ```json ... ```.
61
- """
62
-
63
- ocr_prompt = "Perform precise OCR on the image. Extract all text content, maintaining the original structure, paragraphs, and tables as formatted markdown."
64
-
65
- # --- Model Loading ---
66
- MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
67
- processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
68
- model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
69
- MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
70
- ).to(device).eval()
71
-
72
- MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
73
- processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
74
- model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
75
- MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
76
- ).to(device).eval()
77
-
78
- MODEL_ID_C = "nanonets/Nanonets-OCR-s"
79
- processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
80
- model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
81
- MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16
82
- ).to(device).eval()
83
-
84
- MODEL_ID_G = "echo840/MonkeyOCR"
85
- SUBFOLDER = "Recognition"
86
- processor_g = AutoProcessor.from_pretrained(
87
- MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
88
- )
89
- model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
90
- MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
91
- ).to(device).eval()
92
-
93
- MODEL_ID_I = "allenai/olmOCR-7B-0725"
94
- processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True)
95
- model_i = Qwen2_5_VLForConditionalGeneration.from_pretrained(
96
- MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
97
- ).to(device).eval()
98
-
99
- # --- Utility Functions ---
100
- def layoutjson2md(layout_data: Any) -> str:
101
- """
102
- FIXED: Converts the structured JSON from Layout Analysis into formatted Markdown.
103
- This version is robust against malformed JSON from the model.
104
- """
105
- markdown_lines = []
106
-
107
- # If the model wraps the list in a dictionary, find and extract the list.
108
- if isinstance(layout_data, dict):
109
- found_list = None
110
- for value in layout_data.values():
111
- if isinstance(value, list):
112
- found_list = value
113
- break
114
- if found_list is not None:
115
- layout_data = found_list
116
- else:
117
- return "### Error: Could not find a list of layout items in the JSON object."
118
-
119
- if not isinstance(layout_data, list):
120
- return f"### Error: Expected a list of layout items, but received type {type(layout_data).__name__}."
121
-
122
- try:
123
- # Filter out any non-dictionary items and sort by reading order.
124
- valid_items = [item for item in layout_data if isinstance(item, dict)]
125
- sorted_items = sorted(valid_items, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
126
-
127
- for item in sorted_items:
128
- category = item.get('category', 'Text') # Default to 'Text' if no category
129
- text = item.get('text', '')
130
- if not text:
131
- continue
132
-
133
- if category == 'Title':
134
- markdown_lines.append(f"# {text}\n")
135
- elif category == 'Section-header':
136
- markdown_lines.append(f"## {text}\n")
137
- elif category == 'Table':
138
- if isinstance(text, dict) and 'header' in text and 'rows' in text:
139
- header = '| ' + ' | '.join(map(str, text['header'])) + ' |'
140
- separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |'
141
- rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']]
142
- markdown_lines.extend([header, separator] + rows)
143
- markdown_lines.append("\n")
144
- else: # Fallback for simple text or malformed tables
145
- markdown_lines.append(f"{text}\n")
146
- else:
147
- markdown_lines.append(f"{text}\n")
148
-
149
- except Exception as e:
150
- print(f"Error converting to markdown: {e}")
151
- traceback.print_exc()
152
- return "### Error: An unexpected error occurred while converting JSON to Markdown."
153
-
154
- return "\n".join(markdown_lines)
155
-
156
-
157
- # --- Core Application Logic ---
158
- @spaces.GPU
159
- def process_document_stream(model_name: str, task_choice: str, image: Image.Image, max_new_tokens: int):
160
- """
161
- Main generator function that handles both OCR and Layout Analysis tasks.
162
- """
163
- if image is None:
164
- yield "Please upload an image.", "Please upload an image.", None
165
- return
166
-
167
- # 1. Select prompt based on user's task choice
168
- text_prompt = ocr_prompt if task_choice == "Content Extraction" else layout_prompt
169
-
170
- # 2. Select model and processor
171
- if model_name == "Camel-Doc-OCR-080125": processor, model = processor_m, model_m
172
- elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t
173
- elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c
174
- elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g
175
- elif model_name == "olmOCR-7B-0725": processor, model = processor_i, model_i
176
- else:
177
- yield "Invalid model selected.", "Invalid model selected.", None
178
- return
179
-
180
- # 3. Prepare model inputs and streamer
181
- messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}]
182
- prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
183
- inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
184
- streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
185
- generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
186
-
187
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
188
- thread.start()
189
-
190
- # 4. Stream raw output to the UI in real-time
191
- buffer = ""
192
- for new_text in streamer:
193
- buffer += new_text
194
- buffer = buffer.replace("<|im_end|>", "")
195
- time.sleep(0.01)
196
- yield buffer , "⏳ Processing...", {"status": "streaming"}
197
-
198
- # 5. Post-process the final buffer based on the selected task
199
- if task_choice == "Content Extraction":
200
- # For OCR, the buffer is the final result.
201
- yield buffer, buffer, None
202
- else: # Layout Analysis
203
- try:
204
- json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
205
- if not json_match:
206
- # If no JSON block is found, try to parse the whole buffer as a fallback.
207
- try:
208
- layout_data = json.loads(buffer)
209
- markdown_content = layoutjson2md(layout_data)
210
- yield buffer, markdown_content, layout_data
211
- return
212
- except json.JSONDecodeError:
213
- raise ValueError("JSON object not found in the model's output.")
214
-
215
- json_str = json_match.group(1)
216
- layout_data = json.loads(json_str)
217
- markdown_content = layoutjson2md(layout_data)
218
-
219
- yield buffer, markdown_content, layout_data
220
- except Exception as e:
221
- error_md = f"❌ **Error:** Failed to parse Layout JSON.\n\n**Details:**\n`{str(e)}`\n\n**Raw Output:**\n```\n{buffer}\n```"
222
- error_json = {"error": "ProcessingError", "details": str(e), "raw_output": buffer}
223
- yield buffer, error_md, error_json
224
-
225
-
226
- # --- Gradio UI Definition ---
227
- def create_gradio_interface():
228
- """Builds and returns the Gradio web interface."""
229
- css = """
230
- .main-container { max-width: 1400px; margin: 0 auto; }
231
- .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
232
- .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
233
- """
234
- with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
235
- gr.HTML("""
236
- <div class="title" style="text-align: center">
237
- <h1>Tiny VLMs Lab🧪</h1>
238
- <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
239
- Advanced Vision-Language Model for Image Content and Layout Extraction
240
- </p>
241
- </div>
242
- """)
243
-
244
- with gr.Row():
245
- # Left Column (Inputs)
246
- with gr.Column(scale=1):
247
- model_choice = gr.Dropdown(
248
- choices=["Camel-Doc-OCR-080125",
249
- "MonkeyOCR-Recognition",
250
- "olmOCR-7B-0725",
251
- "Nanonets-OCR-s",
252
- "Megalodon-OCR-Sync-0713"
253
- ],
254
- label="Select Model",
255
- value="Nanonets-OCR-s"
256
- )
257
- task_choice = gr.Dropdown(
258
- choices=["Content Extraction",
259
- "Layout Analysis(.json)"],
260
- label="Select Task", value="Content Extraction"
261
- )
262
- image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
263
- with gr.Accordion("Advanced Settings", open=False):
264
- max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
265
-
266
- process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
267
- clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
268
-
269
- # Right Column (Outputs)
270
- with gr.Column(scale=2):
271
- with gr.Tabs() as tabs:
272
- with gr.Tab("📝 Extracted Content"):
273
- raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=13, show_copy_button=True)
274
- with gr.Row():
275
- examples = gr.Examples(
276
- examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
277
- inputs=image_input,
278
- label="Examples"
279
- )
280
- gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/OCR-Comparator/discussions)")
281
- with gr.Tab("📰 README.md"):
282
- with gr.Accordion("(Formatted Result)", open=True):
283
- markdown_output = gr.Markdown(label="Formatted Markdown")
284
-
285
- with gr.Tab("📋 Layout Analysis Results"):
286
- json_output = gr.JSON(label="Structured Layout Data (JSON)")
287
-
288
- # Event Handlers
289
- def clear_all_outputs():
290
- return None, "Raw output will appear here.", "Formatted results will appear here.", None
291
-
292
- process_btn.click(
293
- fn=process_document_stream,
294
- inputs=[model_choice,
295
- task_choice,
296
- image_input,
297
- max_new_tokens],
298
- outputs=[raw_output_stream,
299
- markdown_output,
300
- json_output]
301
- )
302
- clear_btn.click(
303
- clear_all_outputs,
304
- outputs=[image_input,
305
- raw_output_stream,
306
- markdown_output,
307
- json_output]
308
- )
309
- return demo
310
-
311
- if __name__ == "__main__":
312
- demo = create_gradio_interface()
313
- demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True)