Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import json | |
import math | |
import os | |
import traceback | |
from io import BytesIO | |
from typing import Any, Dict, List, Optional, Tuple | |
import re | |
import time | |
from threading import Thread | |
import gradio as gr | |
import requests | |
import torch | |
from PIL import Image | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
from qwen_vl_utils import process_vision_info | |
# Constants | |
MIN_PIXELS = 3136 | |
MAX_PIXELS = 11289600 | |
IMAGE_FACTOR = 28 | |
MAX_INPUT_TOKEN_LENGTH = 2048 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Prompts | |
prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox. | |
1. Bbox format: [x1, y1, x2, y2] | |
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. | |
3. Text Extraction & Formatting Rules: | |
- Picture: For the 'Picture' category, the text field should be omitted. | |
- Formula: Format its text as LaTeX. | |
- Table: Format its text as HTML. | |
- All Others (Text, Title, etc.): Format their text as Markdown. | |
4. Constraints: | |
- The output text must be the original text from the image, with no translation. | |
- All layout elements must be sorted according to human reading order. | |
5. Final Output: The entire output must be a single JSON object. | |
""" | |
# Load models | |
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713" | |
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_T, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_C = "nanonets/Nanonets-OCR-s" | |
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True) | |
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_C, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_G = "echo840/MonkeyOCR" | |
SUBFOLDER = "Recognition" | |
processor_g = AutoProcessor.from_pretrained( | |
MODEL_ID_G, | |
trust_remote_code=True, | |
subfolder=SUBFOLDER | |
) | |
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_G, | |
trust_remote_code=True, | |
subfolder=SUBFOLDER, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Utility functions | |
def round_by_factor(number: int, factor: int) -> int: | |
return round(number / factor) * factor | |
def smart_resize( | |
height: int, | |
width: int, | |
factor: int = 28, | |
min_pixels: int = 3136, | |
max_pixels: int = 11289600, | |
): | |
if max(height, width) / min(height, width) > 200: | |
raise ValueError(f"Aspect ratio too extreme: {max(height, width) / min(height, width)}") | |
h_bar = max(factor, round_by_factor(height, factor)) | |
w_bar = max(factor, round_by_factor(width, factor)) | |
if h_bar * w_bar > max_pixels: | |
beta = math.sqrt((height * width) / max_pixels) | |
h_bar = round_by_factor(height / beta, factor) | |
w_bar = round_by_factor(width / beta, factor) | |
elif h_bar * w_bar < min_pixels: | |
beta = math.sqrt(min_pixels / (height * width)) | |
h_bar = round_by_factor(height * beta, factor) | |
w_bar = round_by_factor(width * beta, factor) | |
return h_bar, w_bar | |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None): | |
if isinstance(image_input, str): | |
if image_input.startswith(("http://", "https://")): | |
response = requests.get(image_input) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
else: | |
image = Image.open(image_input).convert('RGB') | |
elif isinstance(image_input, Image.Image): | |
image = image_input.convert('RGB') | |
else: | |
raise ValueError(f"Invalid image input type: {type.image_input)}") | |
if min_pixels or max_pixels: | |
min_pixels = min_pixels or MIN_PIXELS | |
max_pixels = max_pixels or MAX_PIXELS | |
height, width = smart_resize(image.height, image.width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels) | |
image = image.resize((width, height), Image.LANCZOS) | |
return image | |
def is_arabic_text(text: str) -> bool: | |
if not text: | |
return False | |
header_pattern = r'^#{1,6}\s+(.+)$' | |
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$' | |
content_text = [] | |
for line in text.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
header_match = re.match(header_pattern, line, re.MULTILINE) | |
if header_match: | |
content_text.append(header_match.group(1)) | |
continue | |
if re.match(paragraph_pattern, line, re.MULTILINE): | |
content_text.append(line) | |
if not content_text: | |
return False | |
combined_text = ' '.join(content_text) | |
arabic_chars = 0 | |
total_chars = 0 | |
for char in combined_text: | |
if char.isalpha(): | |
total_chars += 1 | |
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'): | |
arabic_chars += 1 | |
return total_chars > 0 and (arabic_chars / total_chars) > 0.5 | |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str: | |
import base64 | |
from io import BytesIO | |
markdown_lines = [] | |
try: | |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0])) | |
for item in sorted_items: | |
category = item.get('category', '') | |
text = item.get(text_key, '') | |
bbox = item.get('bbox', []) | |
if category == 'Picture': | |
if bbox and len(bbox) == 4: | |
try: | |
x1, y1, x2, y2 = bbox | |
x1, y1 = max(0, int(x1)), max(0, int(y1)) | |
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2)) | |
if x2 > x1 and y2 > y1: | |
cropped_img = image.crop((x1, y1, x2, y2)) | |
buffer = BytesIO() | |
cropped_img.save(buffer, format='PNG') | |
img_data = base64.b64encode(buffer.getvalue()).decode() | |
markdown_lines.append(f"<image-card alt="Image" src="data:image/png;base64,{img_data}" ></image-card>\n") | |
else: | |
markdown_lines.append("<image-card alt="Image" src="Image region detected" ></image-card>\n") | |
except Exception as e: | |
print(f"Error processing image region: {e}") | |
markdown_lines.append("<image-card alt="Image" src="Image detected" ></image-card>\n") | |
else: | |
markdown_lines.append("<image-card alt="Image" src="Image detected" ></image-card>\n") | |
elif not text: | |
continue | |
elif category == 'Title': | |
markdown_lines.append(f"# {text}\n") | |
elif category == 'Section-header': | |
markdown_lines.append(f"## {text}\n") | |
elif category == 'Text': | |
markdown_lines.append(f"{text}\n") | |
elif category == 'List-item': | |
markdown_lines.append(f"- {text}\n") | |
elif category == 'Table': | |
if text.strip().startswith('<'): | |
markdown_lines.append(f"{text}\n") | |
else: | |
markdown_lines.append(f"**Table:** {text}\n") | |
elif category == 'Formula': | |
if text.strip().startswith('$') or '\\' in text: | |
markdown_lines.append(f"$$ \n{text}\n $$\n") | |
else: | |
markdown_lines.append(f"**Formula:** {text}\n") | |
elif category == 'Caption': | |
markdown_lines.append(f"*{text}*\n") | |
elif category == 'Footnote': | |
markdown_lines.append(f"^{text}^\n") | |
elif category in ['Page-header', 'Page-footer']: | |
continue | |
else: | |
markdown_lines.append(f"{text}\n") | |
markdown_lines.append("") | |
except Exception as e: | |
print(f"Error converting to markdown: {e}") | |
return str(layout_data) | |
return "\n".join(markdown_lines) | |
def inference(model_name: str, image: Image.Image, text: str, max_new_tokens: int = 1024) -> str: | |
try: | |
if model_name == "Camel-Doc-OCR-062825": | |
processor = processor_m | |
model = model_m | |
elif model_name == "Megalodon-OCR-Sync-0713": | |
processor = processor_t | |
model = model_t | |
elif model_name == "Nanonets-OCR-s": | |
processor = processor_c | |
model = model_c | |
elif model_name == "MonkeyOCR-Recognition": | |
processor = processor_g | |
model = model_g | |
else: | |
raise ValueError(f"Invalid model selected: {model_name}") | |
if image is None: | |
yield "Please upload an image.", "Please upload an image." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt_full], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer, buffer | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
traceback.print_exc() | |
yield f"Error during inference: {str(e)}", f"Error during inference: {str(e)}" | |
def process_image( | |
model_name: str, | |
image: Image.Image, | |
min_pixels: Optional[int] = None, | |
max_pixels: Optional[int] = None, | |
max_new_tokens: int = 1024 | |
): | |
try: | |
if min_pixels or max_pixels: | |
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels) | |
buffer = "" | |
for raw_output, _ in inference(model_name, image, prompt, max_new_tokens): | |
buffer = raw_output | |
yield buffer, None # Yield raw OCR stream and None for JSON during processing | |
try: | |
json_match = re.search(r'```json | |
json_str = json_match.group(1) if json_match else buffer | |
layout_data = json.loads(json_str) | |
yield buffer, layout_data # Final yield with raw OCR and parsed JSON | |
except json.JSONDecodeError: | |
print("Failed to parse JSON output, using raw output") | |
yield buffer, None # If JSON parsing fails, yield raw OCR with no JSON | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
traceback.print_exc() | |
yield f"Error processing image: {str(e)}", None | |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]: | |
if not file_path or not os.path.exists(file_path): | |
return None, "No file selected" | |
file_ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']: | |
image = Image.open(file_path).convert('RGB') | |
return image, "Image loaded" | |
else: | |
return None, f"Unsupported file format: {file_ext}" | |
except Exception as e: | |
print(f"Error loading file: {e}") | |
return None, f"Error loading file: {str(e)}" | |
def create_gradio_interface(): | |
css = """ | |
.main-container { max-width: 1400px; margin: 0 auto; } | |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; } | |
.process-button { | |
border: none !important; | |
color: white !important; | |
font-weight: bold !important; | |
background-color: blue !important;} | |
.process-button:hover { | |
background-color: darkblue !important; | |
transform: translateY(-2px) !important; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } | |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; } | |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; } | |
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; } | |
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; } | |
""" | |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: | |
gr.HTML(""" | |
<div class="title" style="text-align: center"> | |
<h1>Dot<span style="color: red;">β</span><strong></strong>OCR Comparator</h1> | |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
Advanced vision-language model for image to markdown document processing | |
</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_choice = gr.Radio( | |
choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"], | |
label="Select Model", | |
value="Camel-Doc-OCR-062825" | |
) | |
file_input = gr.File( | |
label="Upload Image", | |
file_types =[".jpg", ".jpeg", ".png", ".bmp", ".tiff"], | |
type="filepath" | |
) | |
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300) | |
with gr.Accordion("Advanced Settings", open=False): | |
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens") | |
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels") | |
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels") | |
process_btn = gr.Button("π Process Document", variant="primary", elem_classes=["process-button"], size="lg") | |
clear_btn = gr.Button("ποΈ Clear All", variant="secondary") | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.Tab("π Extracted Content"): | |
output = gr.Textbox(label="Raw OCR Stream", interactive=False, lines=10, show_copy_button=True) | |
with gr.Tab("π Layout Analysis Results"): | |
json_output = gr.JSON(label="Layout Analysis Results", value=None) | |
def process_document(model_name, file_path, max_tokens, min_pix, max_pix): | |
try: | |
if not file_path: | |
return "Please upload an image.", None | |
image, status = load_file_for_preview(file_path) | |
if image is None: | |
return status, None | |
for raw_output, layout_result in process_image(model_name, image, min_pixels=int(min_pix) if min_pix else None, max_pixels=int(max_pix) if max_pix else None, max_new_tokens=max_tokens): | |
yield raw_output, layout_result | |
except Exception as e: | |
error_msg = f"Error processing document: {str(e)}" | |
print(error_msg) | |
traceback.print_exc() | |
yield error_msg, None | |
def handle_file_upload(file_path): | |
if not file_path: | |
return None, "No file loaded" | |
image, page_info = load_file_for_preview(file_path) | |
return image, page_info | |
def clear_all(): | |
return None, None, "No file loaded", None | |
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, output]) | |
process_btn.click( | |
process_document, | |
inputs=[model_choice, file_input, max_new_tokens, min_pixels, max_pixels], | |
outputs=[output, json_output] | |
) | |
clear_btn.click( | |
clear_all, | |
outputs=[file_input, image_preview, output, json_output] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.queue(max_size=10).launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True, show_error=True) |