File size: 16,634 Bytes
c8b8bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import time
from threading import Thread
from io import BytesIO
import uuid
import tempfile

import gradio as gr
import requests
import torch
from PIL import Image
import fitz

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    Qwen2VLForConditionalGeneration,
    AutoModelForCausalLM,
    AutoModelForVision2Seq,
    AutoModelForImageTextToText,
    AutoModel,
    AutoProcessor,
    TextIteratorStreamer,
    AutoTokenizer,
)

from transformers.image_utils import load_image

from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
from reportlab.lib.units import inch

# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("current device:", torch.cuda.current_device())
    print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))

print("Using device:", device)

# --- Model Loading ---
MODEL_ID_M = "LiquidAI/LFM2-VL-450M"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = AutoModelForImageTextToText.from_pretrained(
    MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_T = "LiquidAI/LFM2-VL-1.6B"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = AutoModelForImageTextToText.from_pretrained(
    MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_C = "HuggingFaceTB/SmolVLM-Instruct-250M"
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
model_c = AutoModelForVision2Seq.from_pretrained(
    MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16, _attn_implementation="flash_attention_2"
).to(device).eval()

MODEL_ID_G = "echo840/MonkeyOCR-pro-1.2B"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_I = "UCSC-VLAA/VLAA-Thinker-Qwen2VL-2B"
processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True)
model_i = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_A = "nanonets/Nanonets-OCR-s"
processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True)
model_a = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_A, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_X = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_Z = "Vchitect/ShotVL-3B"
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Z, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

# --- Moondream2 Model Loading ---
MODEL_ID_MD = "vikhyatk/moondream2"
REVISION_MD = "2025-06-21"
moondream = AutoModelForCausalLM.from_pretrained(
  MODEL_ID_MD,
  revision=REVISION_MD,
  trust_remote_code=True,
  torch_dtype=torch.float16,
  device_map={"": "cuda"},
)
tokenizer_md = AutoTokenizer.from_pretrained(MODEL_ID_MD, revision=REVISION_MD)

# --- Qwen2.5-VL-3B-Abliterated-Caption-it ---
MODEL_ID_N = "prithivMLmods/Qwen2.5-VL-3B-Abliterated-Caption-it"
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_N, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

# --- LMM-R1-MGT-PerceReason ---
MODEL_ID_F = "VLM-Reasoner/LMM-R1-MGT-PerceReason"
processor_f = AutoProcessor.from_pretrained(MODEL_ID_F, trust_remote_code=True)
model_f = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_F, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

# TencentBAC/TBAC-VLR1-3B
MODEL_ID_G = "TencentBAC/TBAC-VLR1-3B"
processor_g = AutoProcessor.from_pretrained(MODEL_ID_G, trust_remote_code=True)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

# OCRFlux-3B
MODEL_ID_V = "ChatDOC/OCRFlux-3B"
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_V, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

# --- PDF Generation and Preview Utility Function ---
def generate_and_preview_pdf(image: Image.Image, text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str):
    """
    Generates a PDF, saves it, and then creates image previews of its pages.
    Returns the path to the PDF and a list of paths to the preview images.
    """
    if image is None or not text_content or not text_content.strip():
        raise gr.Error("Cannot generate PDF. Image or text content is missing.")

    # --- 1. Generate the PDF ---
    temp_dir = tempfile.gettempdir()
    pdf_filename = os.path.join(temp_dir, f"output_{uuid.uuid4()}.pdf")
    doc = SimpleDocTemplate(
        pdf_filename,
        pagesize=A4,
        rightMargin=inch, leftMargin=inch,
        topMargin=inch, bottomMargin=inch
    )
    styles = getSampleStyleSheet()
    style_normal = styles["Normal"]
    style_normal.fontSize = int(font_size)
    style_normal.leading = int(font_size) * line_spacing
    style_normal.alignment = {"Left": 0, "Center": 1, "Right": 2, "Justified": 4}[alignment]

    story = []

    img_buffer = BytesIO()
    image.save(img_buffer, format='PNG')
    img_buffer.seek(0)
    
    page_width, _ = A4
    available_width = page_width - 2 * inch
    image_widths = {
        "Small": available_width * 0.3,
        "Medium": available_width * 0.6,
        "Large": available_width * 0.9,
    }
    img_width = image_widths[image_size]
    img = RLImage(img_buffer, width=img_width, height=image.height * (img_width / image.width))
    story.append(img)
    story.append(Spacer(1, 12))

    cleaned_text = re.sub(r'#+\s*', '', text_content).replace("*", "")
    text_paragraphs = cleaned_text.split('\n')
    
    for para in text_paragraphs:
        if para.strip():
            story.append(Paragraph(para, style_normal))

    doc.build(story)

    # --- 2. Render PDF pages as images for preview ---
    preview_images = []
    try:
        pdf_doc = fitz.open(pdf_filename)
        for page_num in range(len(pdf_doc)):
            page = pdf_doc.load_page(page_num)
            pix = page.get_pixmap(dpi=150)
            preview_img_path = os.path.join(temp_dir, f"preview_{uuid.uuid4()}_p{page_num}.png")
            pix.save(preview_img_path)
            preview_images.append(preview_img_path)
        pdf_doc.close()
    except Exception as e:
        print(f"Error generating PDF preview: {e}")
        
    return pdf_filename, preview_images


# --- Core Application Logic ---
@spaces.GPU
def process_document_stream(
    model_name: str, 
    image: Image.Image, 
    prompt_input: str, 
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
    repetition_penalty: float
):
    """
    Main generator function that handles model inference tasks with advanced generation parameters.
    """
    if image is None:
        yield "Please upload an image.", ""
        return
    if not prompt_input or not prompt_input.strip():
        yield "Please enter a prompt.", ""
        return

    if model_name == "Moondream2(vision)":
        image_embeds = moondream.encode_image(image)
        answer = moondream.answer_question(
            image_embeds=image_embeds,
            question=prompt_input,
            tokenizer=tokenizer_md
        )
        yield answer, answer
        return

    if model_name == "LFM2-VL-450M(fast)": processor, model = processor_m, model_m
    elif model_name == "LFM2-VL-1.6B(fast)": processor, model = processor_t, model_t
    elif model_name == "ShotVL-3B(cinematic)": processor, model = processor_z, model_z
    elif model_name == "SmolVLM-Instruct-250M(smol)": processor, model = processor_c, model_c
    elif model_name == "MonkeyOCR-pro-1.2B(ocr)": processor, model = processor_g, model_g
    elif model_name == "VLAA-Thinker-Qwen2VL-2B(reason)": processor, model = processor_i, model_i
    elif model_name == "Nanonets-OCR-s(ocr)": processor, model = processor_a, model_a
    elif model_name == "Megalodon-OCR-Sync-0713(ocr)": processor, model = processor_x, model_x
    elif model_name == "Qwen2.5-VL-3B-Abliterated-Caption-it(caption)": processor, model = processor_n, model_n
    elif model_name == "LMM-R1-MGT-PerceReason(reason)": processor, model = processor_f, model_f 
    elif model_name == "TBAC-VLR1-3B(open-r1)": processor, model = processor_g, model_g
    elif model_name == "OCRFlux-3B(ocr)": processor, model = processor_v, modelv
    else:
        yield "Invalid model selected.", ""
        return

    messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt_input}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    
    generation_kwargs = {
        **inputs, 
        "streamer": streamer, 
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
        "do_sample": True
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer , buffer

    yield buffer, buffer


# --- Gradio UI Definition ---
def create_gradio_interface():
    """Builds and returns the Gradio web interface."""
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
    .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
    #gallery { min-height: 400px; }
    """
    with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>Tiny VLMs Lab🧪</h1>
            <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
                Advanced Vision-Language Model for Image Content and Layout Extraction
            </p>
        </div>
        """)

        with gr.Row():
            # Left Column (Inputs)
            with gr.Column(scale=1):
                model_choice = gr.Dropdown(
                    choices=["LFM2-VL-450M(fast)", "LFM2-VL-1.6B(fast)", "SmolVLM-Instruct-250M(smol)", "Moondream2(vision)", "ShotVL-3B(cinematic)", "Megalodon-OCR-Sync-0713(ocr)", 
                             "VLAA-Thinker-Qwen2VL-2B(reason)", "MonkeyOCR-pro-1.2B(ocr)", "Qwen2.5-VL-3B-Abliterated-Caption-it(caption)", "Nanonets-OCR-s(ocr)",
                             "LMM-R1-MGT-PerceReason(reason)", "TBAC-VLR1-3B(open-r1)", "OCRFlux-3B(ocr)"],
                    label="Select Model", value= "LFM2-VL-450M(fast)"
                )
                prompt_input = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query", value="Describe the image!")
                image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
                
                with gr.Accordion("Advanced Settings", open=False):
                    max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
                    temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                    top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                    top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                    repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
                    
                    gr.Markdown("### PDF Export Settings")
                    font_size = gr.Dropdown(choices=["8", "10", "12", "14", "16", "18"], value="12", label="Font Size")
                    line_spacing = gr.Dropdown(choices=[1.0, 1.15, 1.5, 2.0], value=1.15, label="Line Spacing")
                    alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment")
                    image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF")

                process_btn = gr.Button("🚀 Process Image", variant="primary", elem_classes=["process-button"], size="lg")
                clear_btn = gr.Button("🗑️ Clear All", variant="secondary")

            # Right Column (Outputs)
            with gr.Column(scale=2):
                with gr.Tabs() as tabs:
                    with gr.Tab("📝 Extracted Content"):
                        raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True)
                        with gr.Row():
                            examples = gr.Examples(
                                examples=["examples/1.png", "examples/2.png", "examples/3.png",
                                          "examples/4.png", "examples/5.png", "examples/6.png"],
                                inputs=image_input, label="Examples"
                            )
                        gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/OCR-Comparator/discussions)")
                    
                    with gr.Tab("📰 README.md"):
                        with gr.Accordion("(Result.md)", open=True): 
                            markdown_output = gr.Markdown()

                    with gr.Tab("📋 PDF Preview"):
                        generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary")
                        pdf_output_file = gr.File(label="Download Generated PDF", interactive=False)
                        pdf_preview_gallery = gr.Gallery(label="PDF Page Preview", show_label=True, elem_id="gallery", columns=2, object_fit="contain", height="auto")

        # Event Handlers
        def clear_all_outputs():
            return None, "", "Raw output will appear here.", "", None, None

        process_btn.click(
            fn=process_document_stream,
            inputs=[model_choice, image_input, prompt_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
            outputs=[raw_output_stream, markdown_output]
        )
        
        generate_pdf_btn.click(
            fn=generate_and_preview_pdf,
            inputs=[image_input, raw_output_stream, font_size, line_spacing, alignment, image_size],
            outputs=[pdf_output_file, pdf_preview_gallery]
        )

        clear_btn.click(
            clear_all_outputs,
            outputs=[image_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery]
        )
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True)