import os from threading import Thread import gradio as gr import spaces import torch import edge_tts import asyncio from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from transformers.image_utils import load_image from huggingface_hub import InferenceClient import time # Load text-only model and tokenizer model_id = "prithivMLmods/FastThink-0.5B-Tiny" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() # Load multimodal (OCR) model and processor MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) model_m = Qwen2VLForConditionalGeneration.from_pretrained( MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() TTS_VOICES = [ "en-US-JennyNeural", # @tts1 "en-US-GuyNeural", # @tts2 ] def image_gen(prompt): """Generate image using API""" try: client = InferenceClient("prithivMLmods/STABLE-HAMSTER") return client.text_to_image(prompt) except: client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell") return client_flux.text_to_image(prompt) async def text_to_speech(text: str, voice: str, output_file="output.mp3"): """Convert text to speech using Edge TTS and save as MP3""" communicate = edge_tts.Communicate(text, voice) await communicate.save(output_file) return output_file def clean_chat_history(chat_history): return [msg for msg in chat_history if isinstance(msg, dict) and isinstance(msg.get("content"), str)] @spaces.GPU def generate(input_dict: dict, chat_history: list[dict], max_new_tokens=1024, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2): """Generates chatbot responses with multimodal input, TTS, and image generation.""" text = input_dict["text"] files = input_dict.get("files", []) images = [load_image(file) for file in files] if files else [] if text.startswith("@tts"): voice_index = next((i for i in range(1, 3) if text.startswith(f"@tts{i}")), None) if voice_index: voice = TTS_VOICES[voice_index - 1] text = text.replace(f"@tts{voice_index}", "").strip() conversation = [{"role": "user", "content": text}] else: voice = None elif text.startswith("@image"): query = text.replace("@image", "").strip() yield "Generating Image, Please wait..." image = image_gen(query) yield gr.Image(image) else: conversation = clean_chat_history(chat_history) + [{"role": "user", "content": text}] if images: messages = [{ "role": "user", "content": [ *[{"type": "image", "image": img} for img in images], {"type": "text", "text": text}, ] }] prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) thread = Thread(target=model_m.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}) thread.start() buffer = "" for new_text in streamer: buffer += new_text.replace("<|im_end|>", "") yield buffer else: input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) thread = Thread(target=model.generate, kwargs={ "input_ids": input_ids, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "top_p": top_p, "top_k": top_k, "temperature": temperature, "num_beams": 1, "repetition_penalty": repetition_penalty, }) thread.start() response = "".join([new_text for new_text in streamer]) yield response if voice: output_file = asyncio.run(text_to_speech(response, voice)) yield gr.Audio(output_file, autoplay=True) demo = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=1, maximum=2048, step=1, value=1024), gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), ], examples=[ ["@tts1 Who is Nikola Tesla?"], [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}], ["@image futuristic city at sunset"], ["A train travels 60 kilometers per hour. How far will it travel in 5 hours?"], ], cache_examples=False, description="# QwQ Edge 💬", fill_height=True, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, ) if __name__ == "__main__": demo.queue(max_size=20).launch(share=True)