import os import random import uuid import json import time import asyncio from threading import Thread import gradio as gr import spaces import torch import numpy as np from PIL import Image import edge_tts from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, Qwen2VLForConditionalGeneration, AutoProcessor, ) from transformers.image_utils import load_image from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler DESCRIPTION = """ # QwQ Edge 💬 **Note:** During image generation, a progress bar will appear both at the top of the interface and within the chat. For text generation, a loading animation will display until the response begins. """ css = ''' h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: #fff; background: #1565c0; border-radius: 100vh; } /* Custom styling for progress bars within chat */ .progress-bar-container { width: 100%; margin-top: 5px; } .progress-bar { width: 100%; height: 4px; background-color: #e0e0e0; border-radius: 2px; } .progress-bar::-webkit-progress-bar { background-color: #e0e0e0; border-radius: 2px; } .progress-bar::-webkit-progress-value { background-color: #90ee90; /* Light green */ border-radius: 2px; } .progress-bar::-moz-progress-bar { background-color: #90ee90; /* Light green */ border-radius: 2px; } ''' MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load text-only model and tokenizer model_id = "prithivMLmods/FastThink-0.5B-Tiny" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() TTS_VOICES = [ "en-US-JennyNeural", # @tts1 "en-US-GuyNeural", # @tts2 ] MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) model_m = Qwen2VLForConditionalGeneration.from_pretrained( MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() async def text_to_speech(text: str, voice: str, output_file="output.mp3"): """Convert text to speech using Edge TTS and save as MP3""" communicate = edge_tts.Communicate(text, voice) await communicate.save(output_file) return output_file def clean_chat_history(chat_history): """Filter out non-string content to prevent concatenation errors""" cleaned = [] for msg in chat_history: if isinstance(msg, dict) and isinstance(msg.get("content"), str): cleaned.append(msg) return cleaned # Stable Diffusion XL setup MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) sd_pipe = StableDiffusionXLPipeline.from_pretrained( MODEL_ID_SD, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_safetensors=True, add_watermarker=False, ).to(device) sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) if torch.cuda.is_available(): sd_pipe.text_encoder = sd_pipe.text_encoder.half() if USE_TORCH_COMPILE: sd_pipe.compile() if ENABLE_CPU_OFFLOAD: sd_pipe.enable_model_cpu_offload() MAX_SEED = np.iinfo(np.int32).max def save_image(img: Image.Image) -> str: """Save a PIL image with a unique filename and return the path""" unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU(duration=60, enable_queue=True) def generate_image_fn( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 1, width: int = 1024, height: int = 1024, guidance_scale: float = 3, num_inference_steps: int = 25, randomize_seed: bool = False, use_resolution_binning: bool = True, num_images: int = 1, progress=gr.Progress(track_tqdm=True), ): """Generate images using the SDXL pipeline""" seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator(device=device).manual_seed(seed) options = { "prompt": [prompt] * num_images, "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "generator": generator, "output_type": "pil", } if use_resolution_binning: options["use_resolution_binning"] = True images = [] for i in range(0, num_images, BATCH_SIZE): batch_options = options.copy() batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None: batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] if device.type == "cuda": with torch.autocast("cuda", dtype=torch.float16): outputs = sd_pipe(**batch_options) else: outputs = sd_pipe(**batch_options) images.extend(outputs.images) image_paths = [save_image(img) for img in images] return image_paths, seed @spaces.GPU def generate( input_dict: dict, chat_history: list[dict], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ): """ Generates chatbot responses with support for multimodal input, TTS, and image generation. Special commands: - "@tts1" or "@tts2": triggers text-to-speech. - "@image": triggers image generation using the SDXL pipeline. """ text = input_dict["text"] files = input_dict.get("files", []) if text.strip().lower().startswith("@image"): prompt = text[len("@image"):].strip() # Initial message with progress bar at 0% yield gr.HTML( '
Generating Image...
' '' ) image_paths, used_seed = generate_image_fn( prompt=prompt, negative_prompt="", use_negative_prompt=False, seed=1, width=1024, height=1024, guidance_scale=3, num_inference_steps=25, randomize_seed=True, use_resolution_binning=True, num_images=1, ) # Final message with the image, progress bar at 100% yield gr.Image(image_paths[0]) return tts_prefix = "@tts" is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) if is_tts and voice_index: voice = TTS_VOICES[voice_index - 1] text = text.replace(f"{tts_prefix}{voice_index}", "").strip() conversation = [{"role": "user", "content": text}] else: voice = None text = text.replace(tts_prefix, "").strip() conversation = clean_chat_history(chat_history) conversation.append({"role": "user", "content": text}) if files: if len(files) > 1: images = [load_image(image) for image in files] elif len(files) == 1: images = [load_image(files[0])] else: images = [] messages = [{ "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text}, ] }] prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} thread = Thread(target=model_m.generate, kwargs=generation_kwargs) thread.start() # Initial loading bar (indeterminate animation via CSS) yield gr.HTML( '
Generating response...
' '' ) buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) # Yield only the text, replacing the loading bar yield buffer else: input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { "input_ids": input_ids, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "top_p": top_p, "top_k": top_k, "temperature": temperature, "num_beams": 1, "repetition_penalty": repetition_penalty, } t = Thread(target=model.generate, kwargs=generation_kwargs) t.start() # Initial loading bar yield gr.HTML( '
Generating response...
' '' ) buffer = "" for new_text in streamer: buffer += new_text # Yield only the text, replacing the loading bar yield buffer final_response = buffer if is_tts and voice: output_file = asyncio.run(text_to_speech(final_response, voice)) yield gr.Audio(output_file, autoplay=True) demo = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), ], examples=[ ["@tts1 Who is Nikola Tesla, and why did he die?"], [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}], [{"text": "summarize the letter", "files": ["examples/1.png"]}], ["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"], ["Write a Python function to check if a number is prime."], ["@tts2 What causes rainbows to form?"], ], cache_examples=False, type="messages", description=DESCRIPTION, css=css, fill_height=True, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, ) if __name__ == "__main__": demo.queue(max_size=20).launch(share=True)