Spaces:
Running
on
Zero
Running
on
Zero
Delete LoRA
Browse files- LoRA/LoRA.txt +0 -193
LoRA/LoRA.txt
DELETED
@@ -1,193 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
import numpy as np
|
4 |
-
import random
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
-
import torch
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
11 |
-
|
12 |
-
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
13 |
-
|
14 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
-
pipe = pipe.to(device)
|
16 |
-
|
17 |
-
pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
|
18 |
-
trigger_word = "Turbo Realism"
|
19 |
-
pipe.fuse_lora(lora_scale=1.0)
|
20 |
-
|
21 |
-
MAX_SEED = np.iinfo(np.int32).max
|
22 |
-
MAX_IMAGE_SIZE = 1024
|
23 |
-
|
24 |
-
# Define styles
|
25 |
-
style_list = [
|
26 |
-
{
|
27 |
-
"name": "3840 x 2160",
|
28 |
-
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
29 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
30 |
-
},
|
31 |
-
{
|
32 |
-
"name": "2560 x 1440",
|
33 |
-
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
34 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"name": "HD+",
|
38 |
-
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
39 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"name": "Style Zero",
|
43 |
-
"prompt": "{prompt}",
|
44 |
-
"negative_prompt": "",
|
45 |
-
},
|
46 |
-
]
|
47 |
-
|
48 |
-
STYLE_NAMES = [style["name"] for style in style_list]
|
49 |
-
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
|
50 |
-
|
51 |
-
grid_sizes = {
|
52 |
-
"2x1": (2, 1),
|
53 |
-
"1x2": (1, 2),
|
54 |
-
"2x2": (2, 2),
|
55 |
-
"2x3": (2, 3),
|
56 |
-
"3x2": (3, 2),
|
57 |
-
"1x1": (1, 1)
|
58 |
-
}
|
59 |
-
|
60 |
-
@spaces.GPU(duration=60)
|
61 |
-
def infer(
|
62 |
-
prompt,
|
63 |
-
negative_prompt="",
|
64 |
-
seed=42,
|
65 |
-
randomize_seed=False,
|
66 |
-
width=1024,
|
67 |
-
height=1024,
|
68 |
-
guidance_scale=7.5,
|
69 |
-
num_inference_steps=10,
|
70 |
-
style="Style Zero",
|
71 |
-
grid_size="1x1",
|
72 |
-
progress=gr.Progress(track_tqdm=True),
|
73 |
-
):
|
74 |
-
selected_style = next(s for s in style_list if s["name"] == style)
|
75 |
-
styled_prompt = selected_style["prompt"].format(prompt=prompt)
|
76 |
-
styled_negative_prompt = selected_style["negative_prompt"]
|
77 |
-
|
78 |
-
if randomize_seed:
|
79 |
-
seed = random.randint(0, MAX_SEED)
|
80 |
-
|
81 |
-
generator = torch.Generator().manual_seed(seed)
|
82 |
-
|
83 |
-
grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1))
|
84 |
-
num_images = grid_size_x * grid_size_y
|
85 |
-
|
86 |
-
options = {
|
87 |
-
"prompt": styled_prompt,
|
88 |
-
"negative_prompt": styled_negative_prompt,
|
89 |
-
"guidance_scale": guidance_scale,
|
90 |
-
"num_inference_steps": num_inference_steps,
|
91 |
-
"width": width,
|
92 |
-
"height": height,
|
93 |
-
"generator": generator,
|
94 |
-
"num_images_per_prompt": num_images,
|
95 |
-
}
|
96 |
-
|
97 |
-
torch.cuda.empty_cache() # Clear GPU memory
|
98 |
-
result = pipe(**options)
|
99 |
-
|
100 |
-
grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))
|
101 |
-
|
102 |
-
for i, img in enumerate(result.images[:num_images]):
|
103 |
-
grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
|
104 |
-
|
105 |
-
return grid_img, seed
|
106 |
-
|
107 |
-
examples = [
|
108 |
-
"A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
|
109 |
-
"An anime-style illustration of a delicious, golden-brown wiener schnitzel on a plate, served with fresh lemon slices, parsley --style raw5",
|
110 |
-
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic",
|
111 |
-
"A cat holding a sign that says hello world --ar 85:128 --v 6.0 --style raw"
|
112 |
-
]
|
113 |
-
|
114 |
-
css = '''
|
115 |
-
.gradio-container {
|
116 |
-
max-width: 585px !important;
|
117 |
-
margin: 0 auto !important;
|
118 |
-
display: flex;
|
119 |
-
flex-direction: column;
|
120 |
-
align-items: center;
|
121 |
-
justify-content: center;
|
122 |
-
}
|
123 |
-
h1 { text-align: center; }
|
124 |
-
footer { visibility: hidden; }
|
125 |
-
'''
|
126 |
-
|
127 |
-
with gr.Blocks(css=css) as demo:
|
128 |
-
with gr.Column(elem_id="col-container"):
|
129 |
-
gr.Markdown("## T2i Grid 6x")
|
130 |
-
|
131 |
-
with gr.Row():
|
132 |
-
prompt = gr.Text(
|
133 |
-
show_label=False,
|
134 |
-
max_lines=1,
|
135 |
-
placeholder="Enter your prompt",
|
136 |
-
container=False,
|
137 |
-
)
|
138 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
139 |
-
|
140 |
-
result = gr.Image(show_label=False)
|
141 |
-
|
142 |
-
with gr.Row():
|
143 |
-
grid_size_selection = gr.Dropdown(
|
144 |
-
choices=list(grid_sizes.keys()),
|
145 |
-
value="1x1",
|
146 |
-
label="Grid Size"
|
147 |
-
)
|
148 |
-
|
149 |
-
with gr.Accordion("Advanced Settings", open=False):
|
150 |
-
negative_prompt = gr.Text(
|
151 |
-
label="Negative prompt",
|
152 |
-
max_lines=1,
|
153 |
-
placeholder="Enter a negative prompt",
|
154 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
155 |
-
)
|
156 |
-
seed = gr.Slider(0, MAX_SEED, value=0, label="Seed")
|
157 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
158 |
-
|
159 |
-
with gr.Row():
|
160 |
-
width = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
|
161 |
-
height = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Height")
|
162 |
-
|
163 |
-
with gr.Row():
|
164 |
-
guidance_scale = gr.Slider(0.0, 7.5, step=0.1, value=0.0, label="Guidance scale")
|
165 |
-
num_inference_steps = gr.Slider(1, 50, step=1, value=10, label="Number of inference steps")
|
166 |
-
|
167 |
-
style_selection = gr.Radio(
|
168 |
-
choices=STYLE_NAMES,
|
169 |
-
value=DEFAULT_STYLE_NAME,
|
170 |
-
label="Quality Style",
|
171 |
-
)
|
172 |
-
|
173 |
-
gr.Examples(
|
174 |
-
examples=examples,
|
175 |
-
inputs=[prompt],
|
176 |
-
outputs=[result, seed],
|
177 |
-
fn=infer,
|
178 |
-
cache_examples=False
|
179 |
-
)
|
180 |
-
|
181 |
-
gr.on(
|
182 |
-
triggers=[run_button.click, prompt.submit],
|
183 |
-
fn=infer,
|
184 |
-
inputs=[
|
185 |
-
prompt, negative_prompt, seed, randomize_seed,
|
186 |
-
width, height, guidance_scale, num_inference_steps,
|
187 |
-
style_selection, grid_size_selection
|
188 |
-
],
|
189 |
-
outputs=[result, seed],
|
190 |
-
)
|
191 |
-
|
192 |
-
if __name__ == "__main__":
|
193 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|