Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,11 @@ from transformers import (
|
|
23 |
from transformers.image_utils import load_image
|
24 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
DESCRIPTION = """
|
28 |
# QwQ Edge 💬
|
@@ -45,6 +50,7 @@ h1 {
|
|
45 |
MAX_MAX_NEW_TOKENS = 2048
|
46 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
47 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
48 |
|
49 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
50 |
|
@@ -116,8 +122,6 @@ if USE_TORCH_COMPILE:
|
|
116 |
if ENABLE_CPU_OFFLOAD:
|
117 |
sd_pipe.enable_model_cpu_offload()
|
118 |
|
119 |
-
MAX_SEED = np.iinfo(np.int32).max
|
120 |
-
|
121 |
def save_image(img: Image.Image) -> str:
|
122 |
"""Save a PIL image with a unique filename and return the path."""
|
123 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -178,6 +182,57 @@ def generate_image_fn(
|
|
178 |
image_paths = [save_image(img) for img in images]
|
179 |
return image_paths, seed
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
@spaces.GPU
|
182 |
def generate(
|
183 |
input_dict: dict,
|
@@ -189,16 +244,41 @@ def generate(
|
|
189 |
repetition_penalty: float = 1.2,
|
190 |
):
|
191 |
"""
|
192 |
-
Generates chatbot responses with support for multimodal input, TTS,
|
|
|
|
|
193 |
Special commands:
|
194 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
195 |
- "@image": triggers image generation using the SDXL pipeline.
|
|
|
196 |
"""
|
197 |
text = input_dict["text"]
|
198 |
files = input_dict.get("files", [])
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
if text.strip().lower().startswith("@image"):
|
201 |
-
# Remove the "@image" tag and use the rest as prompt
|
202 |
prompt = text[len("@image"):].strip()
|
203 |
yield "Generating image..."
|
204 |
image_paths, used_seed = generate_image_fn(
|
@@ -214,10 +294,12 @@ def generate(
|
|
214 |
use_resolution_binning=True,
|
215 |
num_images=1,
|
216 |
)
|
217 |
-
# Yield the generated image so that the chat interface displays it.
|
218 |
yield gr.Image(image_paths[0])
|
219 |
return # Exit early
|
220 |
|
|
|
|
|
|
|
221 |
tts_prefix = "@tts"
|
222 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
223 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
@@ -263,7 +345,6 @@ def generate(
|
|
263 |
time.sleep(0.01)
|
264 |
yield buffer
|
265 |
else:
|
266 |
-
|
267 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
268 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
269 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
@@ -313,7 +394,7 @@ demo = gr.ChatInterface(
|
|
313 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
314 |
["Write a Python function to check if a number is prime."],
|
315 |
["@tts2 What causes rainbows to form?"],
|
316 |
-
|
317 |
],
|
318 |
cache_examples=False,
|
319 |
type="messages",
|
|
|
23 |
from transformers.image_utils import load_image
|
24 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
25 |
|
26 |
+
# Additional imports for 3D model generation
|
27 |
+
import tempfile
|
28 |
+
import trimesh
|
29 |
+
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
30 |
+
from diffusers.utils import export_to_ply
|
31 |
|
32 |
DESCRIPTION = """
|
33 |
# QwQ Edge 💬
|
|
|
50 |
MAX_MAX_NEW_TOKENS = 2048
|
51 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
52 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
53 |
+
MAX_SEED = np.iinfo(np.int32).max
|
54 |
|
55 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
56 |
|
|
|
122 |
if ENABLE_CPU_OFFLOAD:
|
123 |
sd_pipe.enable_model_cpu_offload()
|
124 |
|
|
|
|
|
125 |
def save_image(img: Image.Image) -> str:
|
126 |
"""Save a PIL image with a unique filename and return the path."""
|
127 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
182 |
image_paths = [save_image(img) for img in images]
|
183 |
return image_paths, seed
|
184 |
|
185 |
+
# ============================================================
|
186 |
+
# 3D Model Generation using ShapE (Text-to-3D / Image-to-3D)
|
187 |
+
# ============================================================
|
188 |
+
class Model3D:
|
189 |
+
def __init__(self):
|
190 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
191 |
+
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
192 |
+
self.pipe.to(self.device)
|
193 |
+
|
194 |
+
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
195 |
+
self.pipe_img.to(self.device)
|
196 |
+
|
197 |
+
def to_glb(self, ply_path: str) -> str:
|
198 |
+
mesh = trimesh.load(ply_path)
|
199 |
+
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
200 |
+
mesh = mesh.apply_transform(rot)
|
201 |
+
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
202 |
+
mesh = mesh.apply_transform(rot)
|
203 |
+
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
204 |
+
mesh.export(mesh_path.name, file_type="glb")
|
205 |
+
return mesh_path.name
|
206 |
+
|
207 |
+
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
|
208 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
209 |
+
images = self.pipe(
|
210 |
+
prompt,
|
211 |
+
generator=generator,
|
212 |
+
guidance_scale=guidance_scale,
|
213 |
+
num_inference_steps=num_steps,
|
214 |
+
output_type="mesh",
|
215 |
+
).images
|
216 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
217 |
+
export_to_ply(images[0], ply_path.name)
|
218 |
+
return self.to_glb(ply_path.name)
|
219 |
+
|
220 |
+
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
|
221 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
222 |
+
images = self.pipe_img(
|
223 |
+
image,
|
224 |
+
generator=generator,
|
225 |
+
guidance_scale=guidance_scale,
|
226 |
+
num_inference_steps=num_steps,
|
227 |
+
output_type="mesh",
|
228 |
+
).images
|
229 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
230 |
+
export_to_ply(images[0], ply_path.name)
|
231 |
+
return self.to_glb(ply_path.name)
|
232 |
+
|
233 |
+
# Create a global instance of the 3D model generator.
|
234 |
+
model_3d = Model3D()
|
235 |
+
|
236 |
@spaces.GPU
|
237 |
def generate(
|
238 |
input_dict: dict,
|
|
|
244 |
repetition_penalty: float = 1.2,
|
245 |
):
|
246 |
"""
|
247 |
+
Generates chatbot responses with support for multimodal input, TTS, image generation,
|
248 |
+
and 3D model generation.
|
249 |
+
|
250 |
Special commands:
|
251 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
252 |
- "@image": triggers image generation using the SDXL pipeline.
|
253 |
+
- "@3d": triggers 3D model generation using the ShapE pipeline.
|
254 |
"""
|
255 |
text = input_dict["text"]
|
256 |
files = input_dict.get("files", [])
|
257 |
|
258 |
+
# ------------------------------
|
259 |
+
# 3D Model Generation Command
|
260 |
+
# ------------------------------
|
261 |
+
if text.strip().lower().startswith("@3d"):
|
262 |
+
# Remove the "@3d" tag and use the remaining text as the prompt.
|
263 |
+
text = text[len("@3d"):].strip()
|
264 |
+
yield "Generating 3D model..."
|
265 |
+
seed = random.randint(0, MAX_SEED)
|
266 |
+
if files:
|
267 |
+
# If an image is provided, use image-to-3D.
|
268 |
+
image = load_image(files[0])
|
269 |
+
glb_file = model_3d.run_image(image, seed=seed)
|
270 |
+
else:
|
271 |
+
# Otherwise, generate a 3D model from the text prompt.
|
272 |
+
glb_file = model_3d.run_text(text, seed=seed)
|
273 |
+
# Yield the generated GLB file as a downloadable file.
|
274 |
+
yield gr.File(glb_file)
|
275 |
+
return
|
276 |
+
|
277 |
+
# ------------------------------
|
278 |
+
# Image Generation Command
|
279 |
+
# ------------------------------
|
280 |
if text.strip().lower().startswith("@image"):
|
281 |
+
# Remove the "@image" tag and use the rest as prompt.
|
282 |
prompt = text[len("@image"):].strip()
|
283 |
yield "Generating image..."
|
284 |
image_paths, used_seed = generate_image_fn(
|
|
|
294 |
use_resolution_binning=True,
|
295 |
num_images=1,
|
296 |
)
|
|
|
297 |
yield gr.Image(image_paths[0])
|
298 |
return # Exit early
|
299 |
|
300 |
+
# ------------------------------
|
301 |
+
# TTS / Regular Text Generation
|
302 |
+
# ------------------------------
|
303 |
tts_prefix = "@tts"
|
304 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
305 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
345 |
time.sleep(0.01)
|
346 |
yield buffer
|
347 |
else:
|
|
|
348 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
349 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
350 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
394 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
395 |
["Write a Python function to check if a number is prime."],
|
396 |
["@tts2 What causes rainbows to form?"],
|
397 |
+
["@3d A futuristic spaceship in low-poly style"],
|
398 |
],
|
399 |
cache_examples=False,
|
400 |
type="messages",
|