prithivMLmods commited on
Commit
77b374a
·
verified ·
1 Parent(s): 97b7f1e

Delete last-commit

Browse files
last-commit/03082024.txt DELETED
@@ -1,263 +0,0 @@
1
- #!/usr/bin/env python
2
- import os
3
- import random
4
- import uuid
5
- import gradio as gr
6
- import numpy as np
7
- from PIL import Image
8
- import spaces
9
- import torch
10
- from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
11
-
12
- css = '''
13
- .gradio-container{max-width: 570px !important}
14
- h1{text-align:center}
15
- footer {
16
- visibility: hidden
17
- }
18
- '''
19
-
20
- DESCRIPTIONXX = """
21
- ## TEXT 2 IMAGE🥠
22
- """
23
- examples = [
24
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
25
- "Chocolate dripping from a donut against a yellow background, 8k",
26
- "Illustration of A starry night camp in the mountains, 4k, cinematic --ar 85:128 --v 6.0 --style raw",
27
- "A photo of a lavender cat, hdr, 4k, --ar 85:128 --v 6.0 --style raw",
28
- "A delicious ceviche cheesecake slice, 4k, octane render, ray tracing, Ultra-High-Definition"
29
- ]
30
-
31
- MODEL_OPTIONS = {
32
- "Lightning": "SG161222/RealVisXL_V4.0_Lightning",
33
- "Turbovision": "SG161222/RealVisXL_V3.0_Turbo",
34
-
35
- }
36
-
37
- MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
38
- USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
39
- ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
40
- BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
41
-
42
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
43
-
44
- def load_and_prepare_model(model_id):
45
- pipe = StableDiffusionXLPipeline.from_pretrained(
46
- model_id,
47
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
48
- use_safetensors=True,
49
- add_watermarker=False,
50
- ).to(device)
51
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
52
-
53
- if USE_TORCH_COMPILE:
54
- pipe.compile()
55
-
56
- if ENABLE_CPU_OFFLOAD:
57
- pipe.enable_model_cpu_offload()
58
-
59
- return pipe
60
-
61
- # Preload and compile both models
62
- models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
63
-
64
- MAX_SEED = np.iinfo(np.int32).max
65
-
66
- def save_image(img):
67
- unique_name = str(uuid.uuid4()) + ".png"
68
- img.save(unique_name)
69
- return unique_name
70
-
71
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
72
- if randomize_seed:
73
- seed = random.randint(0, MAX_SEED)
74
- return seed
75
-
76
- @spaces.GPU(duration=60, enable_queue=True)
77
- def generate(
78
- model_choice: str,
79
- prompt: str,
80
- negative_prompt: str = "",
81
- use_negative_prompt: bool = False,
82
- seed: int = 1,
83
- width: int = 1024,
84
- height: int = 1024,
85
- guidance_scale: float = 3,
86
- num_inference_steps: int = 25,
87
- randomize_seed: bool = False,
88
- use_resolution_binning: bool = True,
89
- num_images: int = 1,
90
- progress=gr.Progress(track_tqdm=True),
91
- ):
92
- global models
93
- pipe = models[model_choice]
94
-
95
- seed = int(randomize_seed_fn(seed, randomize_seed))
96
- generator = torch.Generator(device=device).manual_seed(seed)
97
-
98
- options = {
99
- "prompt": [prompt] * num_images,
100
- "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
101
- "width": width,
102
- "height": height,
103
- "guidance_scale": guidance_scale,
104
- "num_inference_steps": num_inference_steps,
105
- "generator": generator,
106
- "output_type": "pil",
107
- }
108
-
109
- if use_resolution_binning:
110
- options["use_resolution_binning"] = True
111
-
112
- images = []
113
- for i in range(0, num_images, BATCH_SIZE):
114
- batch_options = options.copy()
115
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
116
- if "negative_prompt" in batch_options:
117
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
118
- images.extend(pipe(**batch_options).images)
119
-
120
- image_paths = [save_image(img) for img in images]
121
- return image_paths, seed
122
-
123
- def load_predefined_images():
124
- predefined_images = [
125
- "assets/1.png",
126
- "assets/2.png",
127
- "assets/3.png",
128
- "assets/4.png",
129
- "assets/5.png",
130
- "assets/6.png",
131
- "assets/7.png",
132
- "assets/8.png",
133
- "assets/9.png",
134
- "assets/10.png",
135
- "assets/11.png",
136
- "assets/12.png",
137
- ]
138
- return predefined_images
139
-
140
- with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
141
- gr.Markdown(DESCRIPTIONXX)
142
- with gr.Row():
143
- prompt = gr.Text(
144
- label="Prompt",
145
- show_label=False,
146
- max_lines=1,
147
- placeholder="Enter your prompt",
148
- container=False,
149
- )
150
- run_button = gr.Button("Run⚡", scale=0)
151
- result = gr.Gallery(label="Result", columns=1, show_label=False)
152
-
153
- with gr.Row():
154
- model_choice = gr.Dropdown(
155
- label="Model Selection",
156
- choices=list(MODEL_OPTIONS.keys()),
157
- value="Lightning"
158
- )
159
-
160
- with gr.Accordion("Advanced options", open=True, visible=False):
161
- num_images = gr.Slider(
162
- label="Number of Images",
163
- minimum=1,
164
- maximum=1,
165
- step=1,
166
- value=1,
167
- )
168
- with gr.Row():
169
- with gr.Column(scale=1):
170
- use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
171
- negative_prompt = gr.Text(
172
- label="Negative prompt",
173
- max_lines=5,
174
- lines=4,
175
- placeholder="Enter a negative prompt",
176
- value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
177
- visible=True,
178
- )
179
- seed = gr.Slider(
180
- label="Seed",
181
- minimum=0,
182
- maximum=MAX_SEED,
183
- step=1,
184
- value=0,
185
- )
186
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
187
- with gr.Row():
188
- width = gr.Slider(
189
- label="Width",
190
- minimum=512,
191
- maximum=MAX_IMAGE_SIZE,
192
- step=64,
193
- value=1024,
194
- )
195
- height = gr.Slider(
196
- label="Height",
197
- minimum=512,
198
- maximum=MAX_IMAGE_SIZE,
199
- step=64,
200
- value=1024,
201
- )
202
- with gr.Row():
203
- guidance_scale = gr.Slider(
204
- label="Guidance Scale",
205
- minimum=0.1,
206
- maximum=6,
207
- step=0.1,
208
- value=3.0,
209
- )
210
- num_inference_steps = gr.Slider(
211
- label="Number of inference steps",
212
- minimum=1,
213
- maximum=35,
214
- step=1,
215
- value=20,
216
- )
217
-
218
- gr.Examples(
219
- examples=examples,
220
- inputs=prompt,
221
- cache_examples=False
222
- )
223
-
224
- use_negative_prompt.change(
225
- fn=lambda x: gr.update(visible=x),
226
- inputs=use_negative_prompt,
227
- outputs=negative_prompt,
228
- api_name=False,
229
- )
230
-
231
- gr.on(
232
- triggers=[
233
- prompt.submit,
234
- negative_prompt.submit,
235
- run_button.click,
236
- ],
237
- fn=generate,
238
- inputs=[
239
- model_choice,
240
- prompt,
241
- negative_prompt,
242
- use_negative_prompt,
243
- seed,
244
- width,
245
- height,
246
- guidance_scale,
247
- num_inference_steps,
248
- randomize_seed,
249
- num_images
250
- ],
251
- outputs=[result, seed],
252
- api_name="run",
253
- )
254
- gr.Markdown("🥠Models used in the playground [[Lightning]](https://huggingface.co/SG161222/RealVisXL_V4.0_Lightning), [[Turbo]](https://huggingface.co/SG161222/RealVisXL_V3.0_Turbo) for image generation. stable diffusion xl piped (sdxl) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multi different variants available.")
255
- gr.Markdown("🥠This is the demo space for generating images using Stable Diffusion with quality styles, different models and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.")
256
- gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
257
-
258
- with gr.Column(scale=3):
259
- gr.Markdown("### Image Gallery")
260
- predefined_gallery = gr.Gallery(label="Image Gallery", columns=3, show_label=False, value=load_predefined_images())
261
-
262
- if __name__ == "__main__":
263
- demo.queue(max_size=20).launch(show_api=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
last-commit/app.txt DELETED
@@ -1,262 +0,0 @@
1
- #!/usr/bin/env python
2
- import os
3
- import random
4
- import uuid
5
- import gradio as gr
6
- import numpy as np
7
- from PIL import Image
8
- import spaces
9
- import torch
10
- from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
11
-
12
- DESCRIPTIONx = """
13
-
14
-
15
- """
16
-
17
- css = '''
18
- .gradio-container{max-width: 560px !important}
19
- h1{text-align:center}
20
- footer {
21
- visibility: hidden
22
- }
23
- '''
24
-
25
- #examples = [
26
- # "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
27
- # "Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5",
28
- # "Illustration of A starry night camp in the mountains. Low-angle view, Minimal background, Geometric shapes theme, Pottery, Split-complementary colors, Bicolored light, UHD",
29
- # "Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
30
- # "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
31
- #]
32
-
33
- MODEL_OPTIONS = {
34
- "Lightning": "SG161222/RealVisXL_V4.0_Lightning",
35
- "Realvision": "SG161222/RealVisXL_V4.0",
36
- }
37
-
38
- MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
39
- USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
40
- ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
41
- BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
42
-
43
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
44
-
45
- def load_and_prepare_model(model_id):
46
- pipe = StableDiffusionXLPipeline.from_pretrained(
47
- model_id,
48
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
49
- use_safetensors=True,
50
- add_watermarker=False,
51
- ).to(device)
52
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
53
-
54
- if USE_TORCH_COMPILE:
55
- pipe.compile()
56
-
57
- if ENABLE_CPU_OFFLOAD:
58
- pipe.enable_model_cpu_offload()
59
-
60
- return pipe
61
-
62
- # Preload and compile both models
63
- models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
64
-
65
- MAX_SEED = np.iinfo(np.int32).max
66
-
67
- def save_image(img):
68
- unique_name = str(uuid.uuid4()) + ".png"
69
- img.save(unique_name)
70
- return unique_name
71
-
72
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
73
- if randomize_seed:
74
- seed = random.randint(0, MAX_SEED)
75
- return seed
76
-
77
- @spaces.GPU(duration=60, enable_queue=True)
78
- def generate(
79
- model_choice: str,
80
- prompt: str,
81
- negative_prompt: str = "",
82
- use_negative_prompt: bool = False,
83
- seed: int = 1,
84
- width: int = 1024,
85
- height: int = 1024,
86
- guidance_scale: float = 3,
87
- num_inference_steps: int = 25,
88
- randomize_seed: bool = False,
89
- use_resolution_binning: bool = True,
90
- num_images: int = 1,
91
- progress=gr.Progress(track_tqdm=True),
92
- ):
93
- global models
94
- pipe = models[model_choice]
95
-
96
- seed = int(randomize_seed_fn(seed, randomize_seed))
97
- generator = torch.Generator(device=device).manual_seed(seed)
98
-
99
- options = {
100
- "prompt": [prompt] * num_images,
101
- "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
102
- "width": width,
103
- "height": height,
104
- "guidance_scale": guidance_scale,
105
- "num_inference_steps": num_inference_steps,
106
- "generator": generator,
107
- "output_type": "pil",
108
- }
109
-
110
- if use_resolution_binning:
111
- options["use_resolution_binning"] = True
112
-
113
- images = []
114
- for i in range(0, num_images, BATCH_SIZE):
115
- batch_options = options.copy()
116
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
117
- if "negative_prompt" in batch_options:
118
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
119
- images.extend(pipe(**batch_options).images)
120
-
121
- image_paths = [save_image(img) for img in images]
122
- return image_paths, seed
123
-
124
- def load_predefined_images():
125
- predefined_images = [
126
- "assets/1.png",
127
- "assets/2.png",
128
- "assets/3.png",
129
- "assets/4.png",
130
- "assets/5.png",
131
- "assets/6.png",
132
- "assets/7.png",
133
- "assets/8.png",
134
- "assets/9.png",
135
- "assets/10.png",
136
- "assets/11.png",
137
- "assets/12.png",
138
- ]
139
- return predefined_images
140
-
141
- with gr.Blocks(css=css) as demo:
142
- gr.Markdown(DESCRIPTIONx)
143
- with gr.Row():
144
- prompt = gr.Text(
145
- label="Prompt",
146
- show_label=False,
147
- max_lines=1,
148
- placeholder="Enter your prompt",
149
- value="A cartoon of a Ironman fighting with Hulk, wall painting",
150
- container=False,
151
- )
152
- run_button = gr.Button("Run⚡", scale=0)
153
- result = gr.Gallery(label="Result", columns=1, show_label=False)
154
-
155
- with gr.Row():
156
- model_choice = gr.Dropdown(
157
- label="Model Selection",
158
- choices=list(MODEL_OPTIONS.keys()),
159
- value="Lightning"
160
- )
161
-
162
- with gr.Accordion("Advanced options", open=True, visible=False):
163
- num_images = gr.Slider(
164
- label="Number of Images",
165
- minimum=1,
166
- maximum=1,
167
- step=1,
168
- value=1,
169
- )
170
- with gr.Row():
171
- with gr.Column(scale=1):
172
- use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
173
- negative_prompt = gr.Text(
174
- label="Negative prompt",
175
- max_lines=5,
176
- lines=4,
177
- placeholder="Enter a negative prompt",
178
- value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
179
- visible=True,
180
- )
181
- seed = gr.Slider(
182
- label="Seed",
183
- minimum=0,
184
- maximum=MAX_SEED,
185
- step=1,
186
- value=0,
187
- )
188
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
189
- with gr.Row():
190
- width = gr.Slider(
191
- label="Width",
192
- minimum=512,
193
- maximum=MAX_IMAGE_SIZE,
194
- step=64,
195
- value=1024,
196
- )
197
- height = gr.Slider(
198
- label="Height",
199
- minimum=512,
200
- maximum=MAX_IMAGE_SIZE,
201
- step=64,
202
- value=1024,
203
- )
204
- with gr.Row():
205
- guidance_scale = gr.Slider(
206
- label="Guidance Scale",
207
- minimum=0.1,
208
- maximum=6,
209
- step=0.1,
210
- value=3.0,
211
- )
212
- num_inference_steps = gr.Slider(
213
- label="Number of inference steps",
214
- minimum=1,
215
- maximum=35,
216
- step=1,
217
- value=20,
218
- )
219
-
220
- # gr.Examples(
221
- # examples=examples,
222
- # inputs=prompt,
223
- # cache_examples=False
224
- #)
225
-
226
- use_negative_prompt.change(
227
- fn=lambda x: gr.update(visible=x),
228
- inputs=use_negative_prompt,
229
- outputs=negative_prompt,
230
- api_name=False,
231
- )
232
-
233
- gr.on(
234
- triggers=[
235
- prompt.submit,
236
- negative_prompt.submit,
237
- run_button.click,
238
- ],
239
- fn=generate,
240
- inputs=[
241
- model_choice,
242
- prompt,
243
- negative_prompt,
244
- use_negative_prompt,
245
- seed,
246
- width,
247
- height,
248
- guidance_scale,
249
- num_inference_steps,
250
- randomize_seed,
251
- num_images
252
- ],
253
- outputs=[result, seed],
254
- api_name="run",
255
- )
256
-
257
- # with gr.Column(scale=3):
258
- # gr.Markdown("### Image Gallery")
259
- # predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load_predefined_images())
260
-
261
- if __name__ == "__main__":
262
- demo.queue(max_size=40).launch(show_api=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
last-commit/doc.txt DELETED
@@ -1,320 +0,0 @@
1
- # TEXT 2 IMAGE PLAYGROUND Documentation
2
-
3
- ## Overview
4
-
5
- TEXT 2 IMAGE PLAYGROUND is a Gradio-based web application designed to generate images from text prompts using advanced AI models. It offers various model options, customization parameters, and a user-friendly interface for an enhanced user experience.
6
-
7
- ## Features
8
-
9
- - **Model Selection**: Choose from multiple AI models to generate images with different styles and qualities.
10
- - **Custom Prompts**: Input text prompts to define the content and style of the generated images.
11
- - **Negative Prompts**: Use negative prompts to avoid unwanted elements in the images.
12
- - **Image Customization**: Adjust parameters like seed, width, height, guidance scale, and number of inference steps.
13
- - **Random Seed Generation**: Enable random seed generation for varied outputs.
14
- - **Image Gallery**: View a gallery of predefined images for inspiration.
15
-
16
- ## Interface
17
-
18
- ### Description
19
-
20
- ```markdown
21
- ## TEXT 2 IMAGE PLAYGROUND 🥠
22
- ```
23
-
24
- ### CSS
25
-
26
- ```css
27
- .gradio-container {
28
- max-width: 690px !important;
29
- }
30
- h1 {
31
- text-align: center;
32
- }
33
- footer {
34
- visibility: hidden;
35
- }
36
- ```
37
-
38
- ### JavaScript
39
-
40
- ```javascript
41
- function refresh() {
42
- const url = new URL(window.location);
43
- if (url.searchParams.get('__theme') !== 'dark') {
44
- url.searchParams.set('__theme', 'dark');
45
- window.location.href = url.href;
46
- }
47
- }
48
- ```
49
-
50
- ### Examples
51
-
52
- Predefined text prompts for quick testing:
53
-
54
- - 3d image, cute girl, in the style of Pixar...
55
- - Chocolate dripping from a donut against a yellow background...
56
- - Illustration of A starry night camp in the mountains...
57
- - Man in brown leather jacket posing for camera...
58
- - Commercial photography, giant burger...
59
-
60
- ## Model Options
61
-
62
- ```python
63
- MODEL_OPTIONS = {
64
- "Realism : V4.0_Lightning🔥": "SG161222/RealVisXL_V4.0_Lightning",
65
- "Detailed/SOTA : Mobius🚀": "Corcelio/mobius",
66
- "Anime : Cagliostrolab🍺": "cagliostrolab/animagine-xl-3.1"
67
- }
68
- ```
69
-
70
- ## Configuration
71
-
72
- Environment variables and configurations:
73
-
74
- ```python
75
- MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
76
- USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
77
- ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
78
- BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
79
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
80
- ```
81
-
82
- ## Model Loading and Preparation
83
-
84
- Function to load and prepare models:
85
-
86
- ```python
87
- def load_and_prepare_model(model_id):
88
- pipe = StableDiffusionXLPipeline.from_pretrained(
89
- model_id,
90
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
91
- use_safetensors=True,
92
- add_watermarker=False,
93
- ).to(device)
94
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
95
-
96
- if USE_TORCH_COMPILE:
97
- pipe.compile()
98
-
99
- if ENABLE_CPU_OFFLOAD:
100
- pipe.enable_model_cpu_offload()
101
-
102
- return pipe
103
-
104
- models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
105
- ```
106
-
107
- ## Image Generation
108
-
109
- Function to generate images based on user inputs:
110
-
111
- ```python
112
- @spaces.GPU(duration=60, enable_queue=True)
113
- def generate(
114
- model_choice: str,
115
- prompt: str,
116
- negative_prompt: str = "",
117
- use_negative_prompt: bool = False,
118
- seed: int = 1,
119
- width: int = 1024,
120
- height: int = 1024,
121
- guidance_scale: float = 3,
122
- num_inference_steps: int = 25,
123
- randomize_seed: bool = False,
124
- use_resolution_binning: bool = True,
125
- num_images: int = 1,
126
- progress=gr.Progress(track_tqdm=True),
127
- ):
128
- global models
129
- pipe = models[model_choice]
130
-
131
- seed = int(randomize_seed_fn(seed, randomize_seed))
132
- generator = torch.Generator(device=device).manual_seed(seed)
133
-
134
- options = {
135
- "prompt": [prompt] * num_images,
136
- "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
137
- "width": width,
138
- "height": height,
139
- "guidance_scale": guidance_scale,
140
- "num_inference_steps": num_inference_steps,
141
- "generator": generator,
142
- "output_type": "pil",
143
- }
144
-
145
- if use_resolution_binning:
146
- options["use_resolution_binning"] = True
147
-
148
- images = []
149
- for i in range(0, num_images, BATCH_SIZE):
150
- batch_options = options.copy()
151
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
152
- if "negative_prompt" in batch_options:
153
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
154
- images.extend(pipe(**batch_options).images)
155
-
156
- image_paths = [save_image(img) for img in images]
157
- return image_paths, seed
158
- ```
159
-
160
- ## Load Predefined Images
161
-
162
- Function to load predefined images for the gallery:
163
-
164
- ```python
165
- def load_predefined_images():
166
- predefined_images = [
167
- "assets/1.png",
168
- "assets/2.png",
169
- "assets/3.png",
170
- "assets/4.png",
171
- "assets/5.png",
172
- "assets/6.png",
173
- "assets/7.png",
174
- "assets/8.png",
175
- "assets/9.png",
176
- "assets/10.png",
177
- "assets/11.png",
178
- "assets/12.png",
179
- ]
180
- return predefined_images
181
- ```
182
-
183
- ## Gradio Interface
184
-
185
- Creating the Gradio interface:
186
-
187
- ```python
188
- with gr.Blocks(css=css, theme="bethecloud/storj_theme", js=js_func) as demo:
189
- gr.Markdown(DESCRIPTIONx)
190
- with gr.Row():
191
- prompt = gr.Text(
192
- label="Prompt",
193
- show_label=False,
194
- max_lines=1,
195
- placeholder="Enter your prompt",
196
- value="Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5",
197
- container=False,
198
- )
199
- run_button = gr.Button("Run🚀", scale=0)
200
- result = gr.Gallery(label="Result", columns=1, show_label=False)
201
-
202
- with gr.Row():
203
- model_choice = gr.Dropdown(
204
- label="Model Selection ☑️",
205
- choices=list(MODEL_OPTIONS.keys()),
206
- value="Realism : V4.0_Lightning🔥"
207
- )
208
-
209
- with gr.Accordion("Advanced options", open=True):
210
- num_images = gr.Slider(
211
- label="Number of Images",
212
- minimum=1,
213
- maximum=1,
214
- step=1,
215
- value=1,
216
- )
217
- with gr.Row():
218
- with gr.Column(scale=1):
219
- use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
220
- negative_prompt = gr.Text(
221
- label="Negative prompt",
222
- max_lines=5,
223
- lines=4,
224
- placeholder="Enter a negative prompt",
225
- value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
226
- visible=True,
227
- )
228
- seed = gr.Slider(
229
- label="Seed",
230
- minimum=0,
231
- maximum=MAX_SEED,
232
- step=1,
233
- value=0,
234
- )
235
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
236
- with gr.Row():
237
- width = gr.Slider(
238
- label="Width",
239
- minimum=512,
240
- maximum=MAX_IMAGE_SIZE,
241
- step=64,
242
- value=1024,
243
- )
244
- height = gr.Slider(
245
- label="Height",
246
- minimum=512,
247
- maximum=MAX_IMAGE_SIZE,
248
- step=64,
249
- value=1024,
250
- )
251
- with gr.Row():
252
- guidance_scale = gr.Slider(
253
- label="Guidance Scale",
254
- minimum=0.1,
255
- maximum=6,
256
- step=0.1,
257
- value=3.0,
258
- )
259
- num_inference_steps = gr.Slider(
260
- label="Number of inference steps",
261
- minimum=1,
262
- maximum=35,
263
- step=1,
264
- value=20,
265
- )
266
-
267
- gr.Examples(
268
- examples=examples,
269
- inputs=prompt,
270
- cache_examples=False
271
- )
272
-
273
- use_negative_prompt.change(
274
- fn=lambda x: gr.update(visible=x),
275
- inputs=use_negative_prompt,
276
- outputs=negative_prompt,
277
- api_name=False,
278
- )
279
-
280
- gr.on(
281
- triggers=[
282
- prompt.submit,
283
- negative_prompt.submit,
284
- run_button.click,
285
- ],
286
- fn=generate,
287
- inputs=[
288
- model_choice,
289
- prompt,
290
- negative_prompt,
291
- use_negative_prompt,
292
- seed,
293
- width,
294
- height,
295
- guidance_scale,
296
- num_inference_steps,
297
- randomize_seed,
298
- num_images
299
- ],
300
- outputs=[result, seed],
301
- api_name="run",
302
- )
303
-
304
- with gr.Column(scale=3):
305
- gr.Markdown("### Image Gallery")
306
- predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load
307
-
308
- _predefined_images())
309
-
310
- if __name__ == "__main__":
311
- demo.queue(max_size=40).launch(show_api=False)
312
- ```
313
-
314
- ## Running the Application
315
-
316
- To run the application, simply execute the script. The interface will launch and be accessible via a web browser.
317
-
318
- ```sh
319
- python app.py
320
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
last-commit/file.txt DELETED
@@ -1,274 +0,0 @@
1
- #!/usr/bin/env python
2
- import os
3
- import random
4
- import uuid
5
- import gradio as gr
6
- import numpy as np
7
- from PIL import Image
8
- import spaces
9
- import torch
10
- from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
11
-
12
- DESCRIPTIONx = """
13
-
14
- ## TEXT-2-IMG SDXL
15
-
16
- """
17
-
18
- css = '''
19
- .gradio-container{max-width: 690px !important}
20
- h1{text-align:center}
21
- footer {
22
- visibility: hidden
23
- }
24
- '''
25
-
26
-
27
- js_func = """
28
- function refresh() {
29
- const url = new URL(window.location);
30
- if (url.searchParams.get('__theme') !== 'dark') {
31
- url.searchParams.set('__theme', 'dark');
32
- window.location.href = url.href;
33
- }
34
- }
35
- """
36
-
37
-
38
- examples = [
39
- "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
40
- "Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5",
41
- "Illustration of A starry night camp in the mountains. Low-angle view, Minimal background, Geometric shapes theme, Pottery, Split-complementary colors, Bicolored light, UHD",
42
- "Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
43
- "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
44
- ]
45
-
46
- MODEL_OPTIONS = {
47
- "Hyper Realism : V4.0_Lightning": "SG161222/RealVisXL_V4.0_Lightning",
48
- "Deep Realism : RealVisv4_XL": "SG161222/RealVisXL_V4.0",
49
- }
50
-
51
- MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
52
- USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
53
- ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
54
- BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
55
-
56
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
57
-
58
- def load_and_prepare_model(model_id):
59
- pipe = StableDiffusionXLPipeline.from_pretrained(
60
- model_id,
61
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
62
- use_safetensors=True,
63
- add_watermarker=False,
64
- ).to(device)
65
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
66
-
67
- if USE_TORCH_COMPILE:
68
- pipe.compile()
69
-
70
- if ENABLE_CPU_OFFLOAD:
71
- pipe.enable_model_cpu_offload()
72
-
73
- return pipe
74
-
75
- # Preload and compile both models
76
- models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
77
-
78
- MAX_SEED = np.iinfo(np.int32).max
79
-
80
- def save_image(img):
81
- unique_name = str(uuid.uuid4()) + ".png"
82
- img.save(unique_name)
83
- return unique_name
84
-
85
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
86
- if randomize_seed:
87
- seed = random.randint(0, MAX_SEED)
88
- return seed
89
-
90
- @spaces.GPU(duration=60, enable_queue=True)
91
- def generate(
92
- model_choice: str,
93
- prompt: str,
94
- negative_prompt: str = "",
95
- use_negative_prompt: bool = False,
96
- seed: int = 1,
97
- width: int = 1024,
98
- height: int = 1024,
99
- guidance_scale: float = 3,
100
- num_inference_steps: int = 25,
101
- randomize_seed: bool = False,
102
- use_resolution_binning: bool = True,
103
- num_images: int = 1,
104
- progress=gr.Progress(track_tqdm=True),
105
- ):
106
- global models
107
- pipe = models[model_choice]
108
-
109
- seed = int(randomize_seed_fn(seed, randomize_seed))
110
- generator = torch.Generator(device=device).manual_seed(seed)
111
-
112
- options = {
113
- "prompt": [prompt] * num_images,
114
- "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
115
- "width": width,
116
- "height": height,
117
- "guidance_scale": guidance_scale,
118
- "num_inference_steps": num_inference_steps,
119
- "generator": generator,
120
- "output_type": "pil",
121
- }
122
-
123
- if use_resolution_binning:
124
- options["use_resolution_binning"] = True
125
-
126
- images = []
127
- for i in range(0, num_images, BATCH_SIZE):
128
- batch_options = options.copy()
129
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
130
- if "negative_prompt" in batch_options:
131
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
132
- images.extend(pipe(**batch_options).images)
133
-
134
- image_paths = [save_image(img) for img in images]
135
- return image_paths, seed
136
-
137
- def load_predefined_images():
138
- predefined_images = [
139
- "assets/1.png",
140
- "assets/2.png",
141
- "assets/3.png",
142
- "assets/4.png",
143
- "assets/5.png",
144
- "assets/6.png",
145
- "assets/7.png",
146
- "assets/8.png",
147
- "assets/9.png",
148
- "assets/10.png",
149
- "assets/11.png",
150
- "assets/12.png",
151
- ]
152
- return predefined_images
153
-
154
- with gr.Blocks(css=css, theme="bethecloud/storj_theme", js=js_func) as demo:
155
- gr.Markdown(DESCRIPTIONx)
156
- with gr.Row():
157
- prompt = gr.Text(
158
- label="Prompt",
159
- show_label=False,
160
- max_lines=1,
161
- placeholder="Enter your prompt",
162
- container=False,
163
- )
164
- run_button = gr.Button("Run⚡", scale=0)
165
- result = gr.Gallery(label="Result", columns=1, show_label=False)
166
-
167
- with gr.Row():
168
- model_choice = gr.Dropdown(
169
- label="Model Selection",
170
- choices=list(MODEL_OPTIONS.keys()),
171
- value="Hyper Realism : V4.0_Lightning"
172
- )
173
-
174
- with gr.Accordion("Advanced options", open=True):
175
- num_images = gr.Slider(
176
- label="Number of Images",
177
- minimum=1,
178
- maximum=1,
179
- step=1,
180
- value=1,
181
- )
182
- with gr.Row():
183
- with gr.Column(scale=1):
184
- use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
185
- negative_prompt = gr.Text(
186
- label="Negative prompt",
187
- max_lines=5,
188
- lines=4,
189
- placeholder="Enter a negative prompt",
190
- value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
191
- visible=True,
192
- )
193
- seed = gr.Slider(
194
- label="Seed",
195
- minimum=0,
196
- maximum=MAX_SEED,
197
- step=1,
198
- value=0,
199
- )
200
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
201
- with gr.Row():
202
- width = gr.Slider(
203
- label="Width",
204
- minimum=512,
205
- maximum=MAX_IMAGE_SIZE,
206
- step=64,
207
- value=1024,
208
- )
209
- height = gr.Slider(
210
- label="Height",
211
- minimum=512,
212
- maximum=MAX_IMAGE_SIZE,
213
- step=64,
214
- value=1024,
215
- )
216
- with gr.Row():
217
- guidance_scale = gr.Slider(
218
- label="Guidance Scale",
219
- minimum=0.1,
220
- maximum=6,
221
- step=0.1,
222
- value=3.0,
223
- )
224
- num_inference_steps = gr.Slider(
225
- label="Number of inference steps",
226
- minimum=1,
227
- maximum=35,
228
- step=1,
229
- value=20,
230
- )
231
-
232
- gr.Examples(
233
- examples=examples,
234
- inputs=prompt,
235
- cache_examples=False
236
- )
237
-
238
- use_negative_prompt.change(
239
- fn=lambda x: gr.update(visible=x),
240
- inputs=use_negative_prompt,
241
- outputs=negative_prompt,
242
- api_name=False,
243
- )
244
-
245
- gr.on(
246
- triggers=[
247
- prompt.submit,
248
- negative_prompt.submit,
249
- run_button.click,
250
- ],
251
- fn=generate,
252
- inputs=[
253
- model_choice,
254
- prompt,
255
- negative_prompt,
256
- use_negative_prompt,
257
- seed,
258
- width,
259
- height,
260
- guidance_scale,
261
- num_inference_steps,
262
- randomize_seed,
263
- num_images
264
- ],
265
- outputs=[result, seed],
266
- api_name="run",
267
- )
268
-
269
- with gr.Column(scale=3):
270
- gr.Markdown("### Image Gallery")
271
- predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load_predefined_images())
272
-
273
- if __name__ == "__main__":
274
- demo.queue(max_size=40).launch(show_api=False)