Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,10 +15,6 @@ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
|
15 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
16 |
pipe = pipe.to(device)
|
17 |
|
18 |
-
#pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
|
19 |
-
#trigger_word = "Turbo Realism"
|
20 |
-
#pipe.fuse_lora(lora_scale=1.0)
|
21 |
-
|
22 |
# Constants
|
23 |
MAX_SEED = np.iinfo(np.int32).max
|
24 |
MAX_IMAGE_SIZE = 1024
|
@@ -58,6 +54,7 @@ grid_sizes = {
|
|
58 |
"3x2": (3, 2),
|
59 |
"1x1": (1, 1),
|
60 |
}
|
|
|
61 |
@spaces.GPU
|
62 |
def infer(
|
63 |
prompt,
|
@@ -72,21 +69,17 @@ def infer(
|
|
72 |
grid_size="1x1",
|
73 |
progress=gr.Progress(track_tqdm=True),
|
74 |
):
|
75 |
-
# Apply seed
|
76 |
if randomize_seed:
|
77 |
seed = random.randint(0, MAX_SEED)
|
78 |
generator = torch.Generator().manual_seed(seed)
|
79 |
|
80 |
-
# Style formatting
|
81 |
selected_style = next(s for s in style_list if s["name"] == style)
|
82 |
styled_prompt = selected_style["prompt"].format(prompt=prompt)
|
83 |
styled_negative = selected_style["negative_prompt"] or negative_prompt
|
84 |
|
85 |
-
# Grid calculation
|
86 |
grid_x, grid_y = grid_sizes.get(grid_size, (1, 1))
|
87 |
num_images = grid_x * grid_y
|
88 |
|
89 |
-
# Inference
|
90 |
output = pipe(
|
91 |
prompt=styled_prompt,
|
92 |
negative_prompt=styled_negative,
|
@@ -98,7 +91,6 @@ def infer(
|
|
98 |
num_images_per_prompt=num_images,
|
99 |
)
|
100 |
|
101 |
-
# Combine into grid
|
102 |
grid_img = Image.new('RGB', (width * grid_x, height * grid_y))
|
103 |
for i, img in enumerate(output.images[:num_images]):
|
104 |
x = (i % grid_x) * width
|
@@ -116,71 +108,69 @@ examples = [
|
|
116 |
|
117 |
css = '''
|
118 |
.gradio-container {
|
119 |
-
max-width:
|
120 |
-
margin: 0 auto
|
121 |
-
display: flex;
|
122 |
-
flex-direction: column;
|
123 |
-
align-items: center;
|
124 |
-
justify-content: center;
|
125 |
}
|
126 |
h1 { text-align: center; }
|
127 |
footer { visibility: hidden; }
|
128 |
'''
|
129 |
|
130 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
131 |
-
|
132 |
-
gr.Markdown("## Text to Image SD3.5")
|
133 |
-
|
134 |
-
with gr.Row():
|
135 |
-
prompt = gr.Text(
|
136 |
-
show_label=False,
|
137 |
-
max_lines=1,
|
138 |
-
placeholder="Enter your prompt",
|
139 |
-
container=False,
|
140 |
-
)
|
141 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
with gr.Row():
|
146 |
grid_size_selection = gr.Dropdown(
|
147 |
choices=list(grid_sizes.keys()),
|
148 |
value="1x1",
|
149 |
label="Grid Size"
|
150 |
)
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
175 |
|
176 |
-
gr.Examples(
|
177 |
-
examples=examples,
|
178 |
-
inputs=[prompt],
|
179 |
-
outputs=[result, seed],
|
180 |
-
fn=infer,
|
181 |
-
cache_examples=False
|
182 |
-
)
|
183 |
-
|
184 |
gr.on(
|
185 |
triggers=[run_button.click, prompt.submit],
|
186 |
fn=infer,
|
|
|
15 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
16 |
pipe = pipe.to(device)
|
17 |
|
|
|
|
|
|
|
|
|
18 |
# Constants
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
|
|
54 |
"3x2": (3, 2),
|
55 |
"1x1": (1, 1),
|
56 |
}
|
57 |
+
|
58 |
@spaces.GPU
|
59 |
def infer(
|
60 |
prompt,
|
|
|
69 |
grid_size="1x1",
|
70 |
progress=gr.Progress(track_tqdm=True),
|
71 |
):
|
|
|
72 |
if randomize_seed:
|
73 |
seed = random.randint(0, MAX_SEED)
|
74 |
generator = torch.Generator().manual_seed(seed)
|
75 |
|
|
|
76 |
selected_style = next(s for s in style_list if s["name"] == style)
|
77 |
styled_prompt = selected_style["prompt"].format(prompt=prompt)
|
78 |
styled_negative = selected_style["negative_prompt"] or negative_prompt
|
79 |
|
|
|
80 |
grid_x, grid_y = grid_sizes.get(grid_size, (1, 1))
|
81 |
num_images = grid_x * grid_y
|
82 |
|
|
|
83 |
output = pipe(
|
84 |
prompt=styled_prompt,
|
85 |
negative_prompt=styled_negative,
|
|
|
91 |
num_images_per_prompt=num_images,
|
92 |
)
|
93 |
|
|
|
94 |
grid_img = Image.new('RGB', (width * grid_x, height * grid_y))
|
95 |
for i, img in enumerate(output.images[:num_images]):
|
96 |
x = (i % grid_x) * width
|
|
|
108 |
|
109 |
css = '''
|
110 |
.gradio-container {
|
111 |
+
max-width: 100%;
|
112 |
+
margin: 0 auto;
|
|
|
|
|
|
|
|
|
113 |
}
|
114 |
h1 { text-align: center; }
|
115 |
footer { visibility: hidden; }
|
116 |
'''
|
117 |
|
118 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
119 |
+
gr.Markdown("## Text to Image SD3.5")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Column(scale=1):
|
123 |
+
with gr.Row():
|
124 |
+
prompt = gr.Text(
|
125 |
+
show_label=False,
|
126 |
+
max_lines=1,
|
127 |
+
placeholder="Enter your prompt",
|
128 |
+
container=False,
|
129 |
+
)
|
130 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
131 |
+
|
132 |
+
result = gr.Image(show_label=False)
|
133 |
|
|
|
134 |
grid_size_selection = gr.Dropdown(
|
135 |
choices=list(grid_sizes.keys()),
|
136 |
value="1x1",
|
137 |
label="Grid Size"
|
138 |
)
|
139 |
|
140 |
+
with gr.Accordion("Advanced Settings", open=False):
|
141 |
+
negative_prompt = gr.Text(
|
142 |
+
label="Negative prompt",
|
143 |
+
max_lines=1,
|
144 |
+
placeholder="Enter a negative prompt",
|
145 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
146 |
+
)
|
147 |
+
seed = gr.Slider(0, MAX_SEED, value=0, label="Seed")
|
148 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
width = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
|
152 |
+
height = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Height")
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
guidance_scale = gr.Slider(0.0, 7.5, step=0.1, value=0.0, label="Guidance scale")
|
156 |
+
num_inference_steps = gr.Slider(1, 50, step=1, value=10, label="Number of inference steps")
|
157 |
+
|
158 |
+
style_selection = gr.Radio(
|
159 |
+
choices=STYLE_NAMES,
|
160 |
+
value=DEFAULT_STYLE_NAME,
|
161 |
+
label="Quality Style",
|
162 |
+
)
|
163 |
+
|
164 |
+
with gr.Column(scale=1):
|
165 |
+
gr.Examples(
|
166 |
+
examples=examples,
|
167 |
+
inputs=[prompt],
|
168 |
+
outputs=[result, seed],
|
169 |
+
fn=infer,
|
170 |
+
cache_examples=False,
|
171 |
+
label="Prompt Examples"
|
172 |
)
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
gr.on(
|
175 |
triggers=[run_button.click, prompt.submit],
|
176 |
fn=infer,
|