Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -42,6 +42,24 @@ h1 {
|
|
42 |
}
|
43 |
'''
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
MAX_MAX_NEW_TOKENS = 2048
|
46 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
47 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
@@ -88,23 +106,6 @@ def clean_chat_history(chat_history):
|
|
88 |
cleaned.append(msg)
|
89 |
return cleaned
|
90 |
|
91 |
-
# Helper: returns HTML code for a thin light-green animated progress bar with a label.
|
92 |
-
def progress_bar_html(label: str) -> str:
|
93 |
-
return f'''
|
94 |
-
<div style="display: flex; align-items: center;">
|
95 |
-
<span>{label}</span>
|
96 |
-
<div style="flex-grow: 1; margin-left: 8px; height: 5px; background-color: lightgreen; overflow: hidden; position: relative;">
|
97 |
-
<div style="width: 100%; height: 100%; background: linear-gradient(90deg, rgba(255,255,255,0) 0%, rgba(255,255,255,0.5) 50%, rgba(255,255,255,0) 100%); animation: progressAnim 1s linear infinite;"></div>
|
98 |
-
</div>
|
99 |
-
</div>
|
100 |
-
<style>
|
101 |
-
@keyframes progressAnim {{
|
102 |
-
0% {{ transform: translateX(-100%); }}
|
103 |
-
100% {{ transform: translateX(100%); }}
|
104 |
-
}}
|
105 |
-
</style>
|
106 |
-
'''
|
107 |
-
|
108 |
# Environment variables and parameters for Stable Diffusion XL
|
109 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
110 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
@@ -185,7 +186,6 @@ def generate_image_fn(
|
|
185 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
186 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
187 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
188 |
-
# Wrap the pipeline call in autocast if using CUDA
|
189 |
if device.type == "cuda":
|
190 |
with torch.autocast("cuda", dtype=torch.float16):
|
191 |
outputs = sd_pipe(**batch_options)
|
@@ -214,13 +214,12 @@ def generate(
|
|
214 |
text = input_dict["text"]
|
215 |
files = input_dict.get("files", [])
|
216 |
|
217 |
-
# For image generation triggered by "@image"
|
218 |
if text.strip().lower().startswith("@image"):
|
219 |
# Remove the "@image" tag and use the rest as prompt
|
220 |
prompt = text[len("@image"):].strip()
|
221 |
-
#
|
222 |
-
|
223 |
-
yield
|
224 |
image_paths, used_seed = generate_image_fn(
|
225 |
prompt=prompt,
|
226 |
negative_prompt="",
|
@@ -234,7 +233,7 @@ def generate(
|
|
234 |
use_resolution_binning=True,
|
235 |
num_images=1,
|
236 |
)
|
237 |
-
#
|
238 |
yield gr.HTML.update(value="")
|
239 |
yield gr.Image(image_paths[0])
|
240 |
return # Exit early
|
@@ -255,7 +254,6 @@ def generate(
|
|
255 |
conversation = clean_chat_history(chat_history)
|
256 |
conversation.append({"role": "user", "content": text})
|
257 |
|
258 |
-
# If there are attached image files, use multimodal processing
|
259 |
if files:
|
260 |
if len(files) > 1:
|
261 |
images = [load_image(image) for image in files]
|
@@ -277,19 +275,17 @@ def generate(
|
|
277 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
278 |
thread.start()
|
279 |
|
|
|
|
|
|
|
280 |
buffer = ""
|
281 |
-
# Yield a progress bar with label "Thinking..."
|
282 |
-
progress_component = gr.HTML(progress_bar_html("Thinking..."))
|
283 |
-
yield progress_component
|
284 |
for new_text in streamer:
|
285 |
buffer += new_text
|
286 |
buffer = buffer.replace("<|im_end|>", "")
|
287 |
time.sleep(0.01)
|
288 |
-
#
|
289 |
-
yield gr.HTML.update(value=
|
290 |
-
yield buffer
|
291 |
else:
|
292 |
-
# For pure text responses:
|
293 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
294 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
295 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
@@ -307,23 +303,23 @@ def generate(
|
|
307 |
"num_beams": 1,
|
308 |
"repetition_penalty": repetition_penalty,
|
309 |
}
|
310 |
-
|
311 |
-
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
for new_text in streamer:
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
yield
|
323 |
|
324 |
# If TTS was requested, convert the final response to speech.
|
325 |
if is_tts and voice:
|
326 |
-
output_file = asyncio.run(text_to_speech(
|
327 |
yield gr.Audio(output_file, autoplay=True)
|
328 |
|
329 |
demo = gr.ChatInterface(
|
|
|
42 |
}
|
43 |
'''
|
44 |
|
45 |
+
def progress_bar_html(label):
|
46 |
+
"""Returns an HTML snippet with a label and an animated thin progress bar."""
|
47 |
+
return f"""
|
48 |
+
<div style="display: flex; align-items: center;">
|
49 |
+
<span style="margin-right: 10px;">{label}</span>
|
50 |
+
<div style="position: relative; width: 110px; height: 5px; background-color: #e0e0e0; border-radius: 2.5px; overflow: hidden;">
|
51 |
+
<div style="width: 100%; height: 100%; background-color: #90ee90; animation: progressAnimation 2s infinite;"></div>
|
52 |
+
</div>
|
53 |
+
<style>
|
54 |
+
@keyframes progressAnimation {{
|
55 |
+
0% {{ opacity: 1; }}
|
56 |
+
50% {{ opacity: 0.5; }}
|
57 |
+
100% {{ opacity: 1; }}
|
58 |
+
}}
|
59 |
+
</style>
|
60 |
+
</div>
|
61 |
+
"""
|
62 |
+
|
63 |
MAX_MAX_NEW_TOKENS = 2048
|
64 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
65 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
106 |
cleaned.append(msg)
|
107 |
return cleaned
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
# Environment variables and parameters for Stable Diffusion XL
|
110 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
111 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
|
|
186 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
187 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
188 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
|
|
189 |
if device.type == "cuda":
|
190 |
with torch.autocast("cuda", dtype=torch.float16):
|
191 |
outputs = sd_pipe(**batch_options)
|
|
|
214 |
text = input_dict["text"]
|
215 |
files = input_dict.get("files", [])
|
216 |
|
|
|
217 |
if text.strip().lower().startswith("@image"):
|
218 |
# Remove the "@image" tag and use the rest as prompt
|
219 |
prompt = text[len("@image"):].strip()
|
220 |
+
# Show a progress bar for image generation
|
221 |
+
progress_html = progress_bar_html("Generating Image")
|
222 |
+
yield gr.HTML(progress_html)
|
223 |
image_paths, used_seed = generate_image_fn(
|
224 |
prompt=prompt,
|
225 |
negative_prompt="",
|
|
|
233 |
use_resolution_binning=True,
|
234 |
num_images=1,
|
235 |
)
|
236 |
+
# Remove the progress bar and then yield the generated image
|
237 |
yield gr.HTML.update(value="")
|
238 |
yield gr.Image(image_paths[0])
|
239 |
return # Exit early
|
|
|
254 |
conversation = clean_chat_history(chat_history)
|
255 |
conversation.append({"role": "user", "content": text})
|
256 |
|
|
|
257 |
if files:
|
258 |
if len(files) > 1:
|
259 |
images = [load_image(image) for image in files]
|
|
|
275 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
276 |
thread.start()
|
277 |
|
278 |
+
# Show a progress bar while processing the multimodal input
|
279 |
+
progress_html = progress_bar_html("Thinking...")
|
280 |
+
yield gr.HTML(progress_html)
|
281 |
buffer = ""
|
|
|
|
|
|
|
282 |
for new_text in streamer:
|
283 |
buffer += new_text
|
284 |
buffer = buffer.replace("<|im_end|>", "")
|
285 |
time.sleep(0.01)
|
286 |
+
# Update the same message to display the final result (removing the progress bar)
|
287 |
+
yield gr.HTML.update(value=buffer)
|
|
|
288 |
else:
|
|
|
289 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
290 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
291 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
303 |
"num_beams": 1,
|
304 |
"repetition_penalty": repetition_penalty,
|
305 |
}
|
306 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
307 |
+
thread.start()
|
308 |
|
309 |
+
# Show a progress bar for text generation
|
310 |
+
progress_html = progress_bar_html("Thinking...")
|
311 |
+
yield gr.HTML(progress_html)
|
312 |
+
buffer = ""
|
313 |
for new_text in streamer:
|
314 |
+
buffer += new_text
|
315 |
+
buffer = buffer.replace("<|im_end|>", "")
|
316 |
+
time.sleep(0.01)
|
317 |
+
# Replace the progress bar with the final text response
|
318 |
+
yield gr.HTML.update(value=buffer)
|
319 |
|
320 |
# If TTS was requested, convert the final response to speech.
|
321 |
if is_tts and voice:
|
322 |
+
output_file = asyncio.run(text_to_speech(buffer, voice))
|
323 |
yield gr.Audio(output_file, autoplay=True)
|
324 |
|
325 |
demo = gr.ChatInterface(
|