Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ DESCRIPTION = """
|
|
10 |
# QwQ Distill
|
11 |
"""
|
12 |
|
13 |
-
css= '''
|
14 |
h1 {
|
15 |
text-align: center;
|
16 |
display: block;
|
@@ -40,6 +40,9 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
40 |
model.config.sliding_window = 4096
|
41 |
model.eval()
|
42 |
|
|
|
|
|
|
|
43 |
|
44 |
@spaces.GPU(duration=120)
|
45 |
def generate(
|
@@ -54,15 +57,23 @@ def generate(
|
|
54 |
conversation = chat_history.copy()
|
55 |
conversation.append({"role": "user", "content": message})
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
59 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
60 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
61 |
input_ids = input_ids.to(model.device)
|
|
|
62 |
|
63 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
64 |
generate_kwargs = dict(
|
65 |
-
|
|
|
66 |
streamer=streamer,
|
67 |
max_new_tokens=max_new_tokens,
|
68 |
do_sample=True,
|
@@ -71,6 +82,7 @@ def generate(
|
|
71 |
temperature=temperature,
|
72 |
num_beams=1,
|
73 |
repetition_penalty=repetition_penalty,
|
|
|
74 |
)
|
75 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
76 |
t.start()
|
|
|
10 |
# QwQ Distill
|
11 |
"""
|
12 |
|
13 |
+
css = '''
|
14 |
h1 {
|
15 |
text-align: center;
|
16 |
display: block;
|
|
|
40 |
model.config.sliding_window = 4096
|
41 |
model.eval()
|
42 |
|
43 |
+
# Set the pad token ID if it's not already set
|
44 |
+
if tokenizer.pad_token_id is None:
|
45 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
46 |
|
47 |
@spaces.GPU(duration=120)
|
48 |
def generate(
|
|
|
57 |
conversation = chat_history.copy()
|
58 |
conversation.append({"role": "user", "content": message})
|
59 |
|
60 |
+
# Apply chat template and get input_ids and attention_mask
|
61 |
+
inputs = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
62 |
+
input_ids = inputs["input_ids"]
|
63 |
+
attention_mask = inputs["attention_mask"]
|
64 |
+
|
65 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
66 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
67 |
+
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
|
68 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
69 |
+
|
70 |
input_ids = input_ids.to(model.device)
|
71 |
+
attention_mask = attention_mask.to(model.device)
|
72 |
|
73 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
74 |
generate_kwargs = dict(
|
75 |
+
input_ids=input_ids,
|
76 |
+
attention_mask=attention_mask,
|
77 |
streamer=streamer,
|
78 |
max_new_tokens=max_new_tokens,
|
79 |
do_sample=True,
|
|
|
82 |
temperature=temperature,
|
83 |
num_beams=1,
|
84 |
repetition_penalty=repetition_penalty,
|
85 |
+
pad_token_id=tokenizer.pad_token_id,
|
86 |
)
|
87 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
88 |
t.start()
|