Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ DESCRIPTION = """
|
|
| 10 |
# QwQ Distill
|
| 11 |
"""
|
| 12 |
|
| 13 |
-
css= '''
|
| 14 |
h1 {
|
| 15 |
text-align: center;
|
| 16 |
display: block;
|
|
@@ -40,6 +40,9 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 40 |
model.config.sliding_window = 4096
|
| 41 |
model.eval()
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
@spaces.GPU(duration=120)
|
| 45 |
def generate(
|
|
@@ -54,15 +57,23 @@ def generate(
|
|
| 54 |
conversation = chat_history.copy()
|
| 55 |
conversation.append({"role": "user", "content": message})
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 59 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
|
| 60 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
|
| 61 |
input_ids = input_ids.to(model.device)
|
|
|
|
| 62 |
|
| 63 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 64 |
generate_kwargs = dict(
|
| 65 |
-
|
|
|
|
| 66 |
streamer=streamer,
|
| 67 |
max_new_tokens=max_new_tokens,
|
| 68 |
do_sample=True,
|
|
@@ -71,6 +82,7 @@ def generate(
|
|
| 71 |
temperature=temperature,
|
| 72 |
num_beams=1,
|
| 73 |
repetition_penalty=repetition_penalty,
|
|
|
|
| 74 |
)
|
| 75 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 76 |
t.start()
|
|
|
|
| 10 |
# QwQ Distill
|
| 11 |
"""
|
| 12 |
|
| 13 |
+
css = '''
|
| 14 |
h1 {
|
| 15 |
text-align: center;
|
| 16 |
display: block;
|
|
|
|
| 40 |
model.config.sliding_window = 4096
|
| 41 |
model.eval()
|
| 42 |
|
| 43 |
+
# Set the pad token ID if it's not already set
|
| 44 |
+
if tokenizer.pad_token_id is None:
|
| 45 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 46 |
|
| 47 |
@spaces.GPU(duration=120)
|
| 48 |
def generate(
|
|
|
|
| 57 |
conversation = chat_history.copy()
|
| 58 |
conversation.append({"role": "user", "content": message})
|
| 59 |
|
| 60 |
+
# Apply chat template and get input_ids and attention_mask
|
| 61 |
+
inputs = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 62 |
+
input_ids = inputs["input_ids"]
|
| 63 |
+
attention_mask = inputs["attention_mask"]
|
| 64 |
+
|
| 65 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 66 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 67 |
+
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 68 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 69 |
+
|
| 70 |
input_ids = input_ids.to(model.device)
|
| 71 |
+
attention_mask = attention_mask.to(model.device)
|
| 72 |
|
| 73 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 74 |
generate_kwargs = dict(
|
| 75 |
+
input_ids=input_ids,
|
| 76 |
+
attention_mask=attention_mask,
|
| 77 |
streamer=streamer,
|
| 78 |
max_new_tokens=max_new_tokens,
|
| 79 |
do_sample=True,
|
|
|
|
| 82 |
temperature=temperature,
|
| 83 |
num_beams=1,
|
| 84 |
repetition_penalty=repetition_penalty,
|
| 85 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 86 |
)
|
| 87 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 88 |
t.start()
|