prithivMLmods's picture
Update app.py
cbd58ed verified
raw
history blame
7.48 kB
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch
from PIL import Image
# Device and model setup
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
#pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
#trigger_word = "Turbo Realism"
#pipe.fuse_lora(lora_scale=1.0)
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Define styles
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
STYLE_NAMES = [s["name"] for s in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
# Define grid layouts
grid_sizes = {
"2x1": (2, 1),
"1x2": (1, 2),
"2x2": (2, 2),
"2x3": (2, 3),
"3x2": (3, 2),
"1x1": (1, 1),
}
@spaces.GPU
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=7.5,
num_inference_steps=10,
style="Style Zero",
grid_size="1x1",
progress=gr.Progress(track_tqdm=True),
):
# Apply seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Style formatting
selected_style = next(s for s in style_list if s["name"] == style)
styled_prompt = selected_style["prompt"].format(prompt=prompt)
styled_negative = selected_style["negative_prompt"] or negative_prompt
# Grid calculation
grid_x, grid_y = grid_sizes.get(grid_size, (1, 1))
num_images = grid_x * grid_y
# Inference
output = pipe(
prompt=styled_prompt,
negative_prompt=styled_negative,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
num_images_per_prompt=num_images,
)
# Combine into grid
grid_img = Image.new('RGB', (width * grid_x, height * grid_y))
for i, img in enumerate(output.images[:num_images]):
x = (i % grid_x) * width
y = (i // grid_x) * height
grid_img.paste(img, (x, y))
return grid_img, seed
examples = [
"A tiny, cute astronaut emerging from a cracked eggshell on the surface of the moon, surrounded by cosmic dust and distant planets in the starry sky. The scene is illuminated by soft lunar light, showcasing the texture of the moon's surface. Shot in ultra-detailed 4K resolution, with a sci-fi fantasy atmosphere and planetary background",
"A cute, fluffy cat standing upright on its hind legs, holding a hand-drawn sign that says 'Hello World' in bold, playful letters. The background is softly blurred, emphasizing the cat’s detailed fur texture and the colorful sign. Captured in portrait aspect ratio --ar 85:128, using --v 6.0 and --style raw for a semi-realistic, endearing look",
"A photorealistic image of a cold coffee beverage in a glass cup, condensation on the surface, sitting on a wooden café table with shallow depth of field. The background features beautiful bokeh lighting, creating a cozy, blurred café ambiance. Shot in portrait mode --ar 85:128, 4K ultra-resolution, using --style raw5 for authentic textures, --v 6.0.",
"An anime-style food illustration of a golden-brown wiener schnitzel, perfectly fried and crispy, served on a white ceramic plate. Accompanied by fresh parsley garnish and thin lemon slices, with artistic shading and stylized highlights. Captured in an anime illustration format --style raw5, high color saturation, food-themed aesthetic."
]
css = '''
.gradio-container {
max-width: 585px !important;
margin: 0 auto !important;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
}
h1 { text-align: center; }
footer { visibility: hidden; }
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## T2i Grid 6x")
with gr.Row():
prompt = gr.Text(
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(show_label=False)
with gr.Row():
grid_size_selection = gr.Dropdown(
choices=list(grid_sizes.keys()),
value="1x1",
label="Grid Size"
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
)
seed = gr.Slider(0, MAX_SEED, value=0, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
height = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Height")
with gr.Row():
guidance_scale = gr.Slider(0.0, 7.5, step=0.1, value=0.0, label="Guidance scale")
num_inference_steps = gr.Slider(1, 50, step=1, value=10, label="Number of inference steps")
style_selection = gr.Radio(
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
fn=infer,
cache_examples=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt, negative_prompt, seed, randomize_seed,
width, height, guidance_scale, num_inference_steps,
style_selection, grid_size_selection
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()