Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from transformers.image_utils import load_image | |
import edge_tts | |
import asyncio | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
# Load models | |
MODEL_ID = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16).eval() | |
# For multimodal OCR processing | |
OCR_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
ocr_processor = AutoProcessor.from_pretrained(OCR_MODEL_ID, trust_remote_code=True) | |
ocr_model = Qwen2VLForConditionalGeneration.from_pretrained(OCR_MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval() | |
TTS_VOICES = [ | |
"en-US-JennyNeural", # @tts1 | |
"en-US-GuyNeural", # @tts2 | |
"en-US-AriaNeural", # @tts3 | |
"en-US-DavisNeural", # @tts4 | |
"en-US-JaneNeural", # @tts5 | |
"en-US-JasonNeural", # @tts6 | |
"en-US-NancyNeural", # @tts7 | |
"en-US-TonyNeural", # @tts8 | |
] | |
# Handle text-to-speech conversion | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
"""Convert text to speech using Edge TTS and save as MP3""" | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
def generate( | |
input_dict, | |
history, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2 | |
): | |
"""Generates chatbot response and handles TTS requests with multimodal support""" | |
text = input_dict.get("text", "") | |
files = input_dict.get("files", []) | |
# Handle multimodal OCR processing | |
if files: | |
images = [load_image(image) for image in files] | |
else: | |
images = [] | |
# Check if the message is TTS request | |
tts_prefix = "@tts" | |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 9)) | |
voice_index = next((i for i in range(1, 9) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
if is_tts and voice_index: | |
voice = TTS_VOICES[voice_index - 1] | |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
else: | |
voice = None | |
text = text.replace(tts_prefix, "").strip() | |
# If images are provided, combine image and text for the prompt | |
if images: | |
# Prepare images as part of the conversation | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
prompt = ocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = ocr_processor( | |
text=[prompt], | |
images=images, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
else: | |
# Normal text-only input | |
conversation = [*history, {"role": "user", "content": text}] | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
# Start generation in a separate thread | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Collect generated text | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
# Handle text-to-speech | |
if is_tts and voice: | |
output_file = asyncio.run(text_to_speech(final_response, voice)) | |
yield gr.Audio(output_file, autoplay=True) # Return playable audio | |
else: | |
yield final_response # Return text response | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), # Multimodal input | |
gr.Textbox(label="Chat History", value="", placeholder="Previous conversation history"), | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
outputs=["text", "audio"], | |
examples=[ | |
["@tts1 Who is Nikola Tesla, and why did he die?"], | |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], | |
["Write a Python function to check if a number is prime."], | |
["@tts2 What causes rainbows to form?"], | |
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"], | |
["@tts5 What is the capital of France?"], | |
], | |
stop_btn="Stop Generation", | |
description="QwQ Edge: A Chatbot with Text-to-Speech and Multimodal Support", | |
css=css, | |
fill_height=True, | |
) | |
if __name__ == "__main__": | |
demo.launch() |