Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import edge_tts | |
import asyncio | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
from transformers.image_utils import load_image | |
import time | |
# ============================================================================= | |
# New imports and helper classes for image generation | |
# ============================================================================= | |
try: | |
# We use Hugging Face’s InferenceClient as a generic image-generation API client. | |
from huggingface_hub import InferenceClient as HFInferenceClient | |
except ImportError: | |
HFInferenceClient = None | |
# A simple wrapper client for our primary image-generation space. | |
class Client: | |
def __init__(self, repo_id): | |
self.repo_id = repo_id | |
if HFInferenceClient is not None: | |
self.client = HFInferenceClient(repo_id) | |
else: | |
self.client = None | |
def predict(self, task, arg2, prompt, api_name): | |
if self.client is not None: | |
# Here we assume that calling the client with the prompt returns an image. | |
# (Depending on your API, you might need to adjust parameters.) | |
return self.client(prompt) | |
else: | |
raise Exception("HFInferenceClient not available") | |
def image_gen(prompt): | |
""" | |
Uses the STABLE-HAMSTER space to generate an image based on the prompt. | |
""" | |
client = Client("prithivMLmods/STABLE-HAMSTER") | |
return client.predict("Image Generation", None, prompt, api_name="/stable_hamster") | |
# ============================================================================= | |
# Original Code (with modifications below) | |
# ============================================================================= | |
DESCRIPTION = """ | |
# QwQ Edge 💬 | |
""" | |
css = ''' | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: #fff; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
''' | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load text-only model and tokenizer | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
TTS_VOICES = [ | |
"en-US-JennyNeural", # @tts1 | |
"en-US-GuyNeural", # @tts2 | |
] | |
# Load multimodal (OCR) model and processor | |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
"""Convert text to speech using Edge TTS and save as MP3""" | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
def clean_chat_history(chat_history): | |
""" | |
Filter out any chat entries whose "content" is not a string. | |
This helps prevent errors when concatenating previous messages. | |
""" | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
def generate( | |
input_dict: dict, | |
chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
""" | |
Generates chatbot responses with support for multimodal input, TTS, and now image generation. | |
If the query starts with an @tts command (e.g. "@tts1"), previous chat history is cleared. | |
If the query starts with an @image command, the image generation branch is used. | |
""" | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
# ------------------------------------------------------------------------- | |
# NEW: Check for image generation command (@image) | |
# ------------------------------------------------------------------------- | |
image_prefix = "@image" | |
if text.strip().lower().startswith(image_prefix): | |
# Remove the prefix and any extra whitespace | |
query = text[len(image_prefix):].strip() | |
yield "Generating Image, Please wait 10 sec..." | |
try: | |
image = image_gen(query) | |
# If the API returns a tuple (as in the snippet) use the second element; | |
# otherwise assume it returns an image directly. | |
if isinstance(image, (list, tuple)) and len(image) > 1: | |
yield gr.Image(image[1]) | |
else: | |
yield gr.Image(image) | |
except Exception as e: | |
yield "Error in primary image generation, trying fallback..." | |
try: | |
# Use the fallback image generation client. | |
if HFInferenceClient is not None: | |
client_flux = HFInferenceClient("black-forest-labs/FLUX.1-schnell") | |
image = client_flux.text_to_image(query) | |
yield gr.Image(image) | |
else: | |
yield "Fallback client not available." | |
except Exception as fallback_error: | |
yield f"Error in image generation: {str(fallback_error)}" | |
return # End execution after processing the image-generation request. | |
# ------------------------------------------------------------------------- | |
# Continue with the original processing (image files, TTS, or text conversation) | |
# ------------------------------------------------------------------------- | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
tts_prefix = "@tts" | |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) | |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
if is_tts and voice_index: | |
voice = TTS_VOICES[voice_index - 1] | |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
# Clear any previous chat history to avoid concatenation issues | |
conversation = [{"role": "user", "content": text}] | |
else: | |
voice = None | |
text = text.replace(tts_prefix, "").strip() | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": text}) | |
if images: | |
# Multimodal branch using the OCR model | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield "Thinking..." | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
else: | |
# Text-only branch using the text model | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
yield final_response | |
if is_tts and voice: | |
output_file = asyncio.run(text_to_speech(final_response, voice)) | |
yield gr.Audio(output_file, autoplay=True) | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
examples=[ | |
["@tts1 Who is Nikola Tesla, and why did he die?"], | |
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}], | |
[{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], | |
["Write a Python function to check if a number is prime."], | |
["@tts2 What causes rainbows to form?"], | |
["@image A beautiful sunset over a mountain range"], | |
], | |
cache_examples=False, | |
type="messages", | |
description=DESCRIPTION, | |
css=css, | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |