Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,961 Bytes
0c1b8f7 0ba4242 0c1b8f7 10cb780 0c1b8f7 ea9ba29 0ba4242 0c1b8f7 0ba4242 bce38cc 0ba4242 806d92e bce38cc 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 761375e 0ba4242 47473ae c863607 ea9ba29 ff77d8a ab6b5e5 7d0f94b 0ba4242 ea9ba29 7d0f94b 0ba4242 7d0f94b 0ba4242 a29c2e7 0ba4242 7d0f94b 0ba4242 be810f5 0ba4242 7a2c608 ab6b5e5 ea9ba29 bce38cc 0ba4242 ea9ba29 0ba4242 db9acad ea9ba29 dc8101f 33cb38e ea9ba29 0ba4242 7d0f94b 0ba4242 47473ae 0c1b8f7 56cff44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
import edge_tts
import asyncio
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """
# QwQ Tiny
"""
css ='''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
async def text_to_speech(text: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
voice = "en-US-JennyNeural" # Change this to your preferred voice
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
"""Generates chatbot response and handles TTS requests"""
is_tts = message.strip().lower().startswith("@tts")
message = message.replace("@tts", "").strip()
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
final_response = "".join(outputs)
if is_tts:
output_file = asyncio.run(text_to_speech(final_response))
return output_file # Return MP3 file
return final_response # Return text response
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
stop_btn=None,
examples=[
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
["Write a Python function to check if a number is prime."],
["What causes rainbows to form?"],
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
["@tts What is the capital of France?"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |