Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,185 Bytes
0c1b8f7 b06a87f 0c1b8f7 b06a87f 0c1b8f7 32d8e74 b06a87f 0ba4242 0c1b8f7 d7f29b6 0ba4242 f0d2024 0ba4242 806d92e b06a87f d7f29b6 47473ae b06a87f d7f29b6 7f471f2 b06a87f 48a6837 ab6b5e5 7d0f94b 0ba4242 b06a87f d7f29b6 0ba4242 32d8e74 b06a87f 7d0f94b 0ba4242 a29c2e7 b06a87f 0ba4242 be810f5 0ba4242 b06a87f ab6b5e5 b06a87f ea9ba29 d7f29b6 7f471f2 b06a87f ea9ba29 bce38cc 0ba4242 ea9ba29 0ba4242 d7f29b6 b06a87f d7f29b6 b06a87f d7f29b6 0ba4242 7d0f94b 0ba4242 b06a87f 0ba4242 47473ae 0c1b8f7 56cff44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
import edge_tts
import asyncio
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
DESCRIPTION = """
# QwQ Edge 💬
"""
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
# List of voices
voices = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
"en-US-AriaNeural", # @tts3
"en-US-DavisNeural", # @tts4
"en-US-JaneNeural", # @tts5
"en-US-JasonNeural", # @tts6
"en-US-NancyNeural", # @tts7
"en-US-TonyNeural", # @tts8
]
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
"""Generates chatbot response and handles TTS requests"""
is_tts = message.strip().lower().startswith("@tts")
tts_index = None
if is_tts:
# Extract the number after @tts
tts_part = message.strip().lower().split()[0] # Get the @ttsX part
if len(tts_part) > 4: # Check if it's @ttsX (e.g., @tts1, @tts2, etc.)
try:
tts_index = int(tts_part[4:]) - 1 # Convert to 0-based index
if tts_index < 0 or tts_index >= len(voices):
gr.Warning(f"Invalid TTS voice index. Using default voice.")
tts_index = 0
except ValueError:
gr.Warning(f"Invalid TTS voice index. Using default voice.")
tts_index = 0
else:
tts_index = 0 # Default to the first voice if no number is provided
message = message.replace(tts_part, "").strip() # Remove @ttsX from the message
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
final_response = "".join(outputs)
if is_tts:
voice = voices[tts_index] # Select the voice based on the index
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True) # Return playable audio
else:
yield final_response # Return text response
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
stop_btn=None,
examples=[
["@tts1 Who is Nikola Tesla, and why did he die?"],
["@tts2 A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
["Write a Python function to check if a number is prime."],
["@tts3 What causes rainbows to form?"],
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
["@tts4 What is the capital of France?"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |