File size: 7,479 Bytes
0c1b8f7
a01646a
848917c
3b1b420
 
848917c
 
a01646a
40dd3a7
3b1b420
848917c
 
 
 
 
 
 
9dd9e5d
 
 
 
3b1b420
2b1f8da
848917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a1d71
848917c
 
3b1b420
848917c
 
 
 
 
 
3b1b420
848917c
5380a8e
c112228
3b1b420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848917c
 
cbd58ed
 
 
 
848917c
 
c9a1d71
 
 
 
 
 
 
 
 
 
 
 
4a4da06
bcc7a7d
848917c
bcc7a7d
848917c
 
 
 
 
 
 
 
 
 
c9a1d71
848917c
c9a1d71
848917c
c9a1d71
848917c
 
 
 
 
 
 
 
 
 
 
c9a1d71
848917c
 
 
c9a1d71
 
848917c
 
a9868ec
c9a1d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848917c
 
 
 
 
c9a1d71
 
 
848917c
 
 
47473ae
0c1b8f7
848917c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
import numpy as np
import random

import spaces
from diffusers import DiffusionPipeline
import torch
from PIL import Image

# Device and model setup
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"

torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

#pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
#trigger_word = "Turbo Realism"  
#pipe.fuse_lora(lora_scale=1.0)

# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Define styles
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]
STYLE_NAMES = [s["name"] for s in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]

# Define grid layouts
grid_sizes = {
    "2x1": (2, 1),
    "1x2": (1, 2),
    "2x2": (2, 2),
    "2x3": (2, 3),
    "3x2": (3, 2),
    "1x1": (1, 1),
}
@spaces.GPU
def infer(
     prompt,
     negative_prompt="",
     seed=42,
     randomize_seed=False,
     width=1024,
     height=1024,
     guidance_scale=7.5,
     num_inference_steps=10,
     style="Style Zero",
     grid_size="1x1",
     progress=gr.Progress(track_tqdm=True),
 ):
     # Apply seed
     if randomize_seed:
         seed = random.randint(0, MAX_SEED)
     generator = torch.Generator().manual_seed(seed)

     # Style formatting
     selected_style = next(s for s in style_list if s["name"] == style)
     styled_prompt = selected_style["prompt"].format(prompt=prompt)
     styled_negative = selected_style["negative_prompt"] or negative_prompt

     # Grid calculation
     grid_x, grid_y = grid_sizes.get(grid_size, (1, 1))
     num_images = grid_x * grid_y

     # Inference
     output = pipe(
         prompt=styled_prompt,
         negative_prompt=styled_negative,
         width=width,
         height=height,
         guidance_scale=guidance_scale,
         num_inference_steps=num_inference_steps,
         generator=generator,
         num_images_per_prompt=num_images,
     )

     # Combine into grid
     grid_img = Image.new('RGB', (width * grid_x, height * grid_y))
     for i, img in enumerate(output.images[:num_images]):
         x = (i % grid_x) * width
         y = (i // grid_x) * height
         grid_img.paste(img, (x, y))

     return grid_img, seed

examples = [
    "A tiny, cute astronaut emerging from a cracked eggshell on the surface of the moon, surrounded by cosmic dust and distant planets in the starry sky. The scene is illuminated by soft lunar light, showcasing the texture of the moon's surface. Shot in ultra-detailed 4K resolution, with a sci-fi fantasy atmosphere and planetary background",
    "A cute, fluffy cat standing upright on its hind legs, holding a hand-drawn sign that says 'Hello World' in bold, playful letters. The background is softly blurred, emphasizing the cat’s detailed fur texture and the colorful sign. Captured in portrait aspect ratio --ar 85:128, using --v 6.0 and --style raw for a semi-realistic, endearing look",
    "A photorealistic image of a cold coffee beverage in a glass cup, condensation on the surface, sitting on a wooden café table with shallow depth of field. The background features beautiful bokeh lighting, creating a cozy, blurred café ambiance. Shot in portrait mode --ar 85:128, 4K ultra-resolution, using --style raw5 for authentic textures, --v 6.0.",
    "An anime-style food illustration of a golden-brown wiener schnitzel, perfectly fried and crispy, served on a white ceramic plate. Accompanied by fresh parsley garnish and thin lemon slices, with artistic shading and stylized highlights. Captured in an anime illustration format --style raw5, high color saturation, food-themed aesthetic."
]

css = '''
.gradio-container {
    max-width: 585px !important;
    margin: 0 auto !important;
    display: flex;
    flex-direction: column;
    align-items: center;
    justify-content: center;
}
h1 { text-align: center; }
footer { visibility: hidden; }
'''

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## T2i Grid 6x")

        with gr.Row():
            prompt = gr.Text(
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(show_label=False)

        with gr.Row():
            grid_size_selection = gr.Dropdown(
                choices=list(grid_sizes.keys()),
                value="1x1",
                label="Grid Size"
            )

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
            )
            seed = gr.Slider(0, MAX_SEED, value=0, label="Seed")
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
                height = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Height")

            with gr.Row():
                guidance_scale = gr.Slider(0.0, 7.5, step=0.1, value=0.0, label="Guidance scale")
                num_inference_steps = gr.Slider(1, 50, step=1, value=10, label="Number of inference steps")

            style_selection = gr.Radio(
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Quality Style",
            )

        gr.Examples(
            examples=examples,
            inputs=[prompt],
            outputs=[result, seed],
            fn=infer,
            cache_examples=False
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt, negative_prompt, seed, randomize_seed,
            width, height, guidance_scale, num_inference_steps,
            style_selection, grid_size_selection
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()