Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,084 Bytes
0c1b8f7 32d8e74 ea9ba29 32d8e74 90c972a 32d8e74 0ba4242 0c1b8f7 0ba4242 32d8e74 0ba4242 806d92e 0ba4242 ab6b5e5 761375e 0ba4242 47473ae 32d8e74 c863607 42c727c ab6b5e5 7d0f94b 0ba4242 32d8e74 ea9ba29 32d8e74 0ba4242 32d8e74 7d0f94b 32d8e74 7d0f94b 32d8e74 7d0f94b 0ba4242 a29c2e7 32d8e74 0ba4242 be810f5 0ba4242 ab6b5e5 32d8e74 ea9ba29 32d8e74 ea9ba29 32d8e74 ea9ba29 32d8e74 bce38cc 0ba4242 ea9ba29 0ba4242 db9acad 32d8e74 32738dd 32d8e74 0ba4242 7d0f94b 0ba4242 47473ae 0c1b8f7 56cff44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os
import gradio as gr
import torch
import tempfile
import asyncio
import edge_tts
import spaces
from threading import Thread
from collections.abc import Iterator
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """
# QwQ Tiny with Edge TTS
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
async def text_to_speech(text: str) -> str:
"""Converts text to speech using Edge TTS and returns the generated audio file path."""
communicate = edge_tts.Communicate(text)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str] | str:
is_tts = message.strip().startswith("@tts")
is_text_only = message.strip().startswith("@text")
# Remove special tags
if is_tts:
message = message.replace("@tts", "").strip()
elif is_text_only:
message = message.replace("@text", "").strip()
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
final_output = "".join(outputs)
# If TTS requested, generate speech and return audio file
if is_tts:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
audio_path = loop.run_until_complete(text_to_speech(final_output))
return audio_path # Returning audio file path
return final_output # Returning text output
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
stop_btn=None,
examples=[
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
["@text What causes rainbows to form?"],
["@tts Explain Newton's third law of motion."],
["@text Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |