File size: 6,139 Bytes
0c1b8f7
a592e13
b06a87f
0c1b8f7
 
a592e13
 
32d8e74
b06a87f
a592e13
b06a87f
a592e13
 
 
 
b06a87f
a592e13
 
 
 
d6b5ac6
 
d7f29b6
 
 
d6b5ac6
 
 
 
 
d7f29b6
47473ae
a592e13
d7f29b6
7f471f2
b06a87f
 
 
 
48a6837
ab6b5e5
a592e13
 
 
 
 
 
 
b06a87f
a592e13
 
 
 
 
 
 
 
 
 
 
d6b5ac6
a592e13
 
d6b5ac6
 
 
a592e13
d6b5ac6
 
a592e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9ba29
a592e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b5ac6
d7f29b6
7f471f2
b06a87f
 
ea9ba29
a592e13
 
0ba4242
a592e13
 
 
ea9ba29
 
 
 
 
0ba4242
a592e13
0ba4242
d6b5ac6
c1f7ac1
b06a87f
d6b5ac6
b06a87f
d6b5ac6
0ba4242
a592e13
 
b06a87f
0ba4242
 
47473ae
0c1b8f7
a592e13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import time
from threading import Thread
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers.image_utils import load_image
import edge_tts
import asyncio
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor

# Load models
MODEL_ID = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16).eval()

# For multimodal OCR processing
OCR_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
ocr_processor = AutoProcessor.from_pretrained(OCR_MODEL_ID, trust_remote_code=True)
ocr_model = Qwen2VLForConditionalGeneration.from_pretrained(OCR_MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval()

TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
    "en-US-AriaNeural",   # @tts3
    "en-US-DavisNeural",  # @tts4
    "en-US-JaneNeural",   # @tts5
    "en-US-JasonNeural",  # @tts6
    "en-US-NancyNeural",  # @tts7
    "en-US-TonyNeural",   # @tts8
]

# Handle text-to-speech conversion
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

@spaces.GPU
def generate(
    input_dict, 
    history, 
    max_new_tokens: int = 1024, 
    temperature: float = 0.6, 
    top_p: float = 0.9, 
    top_k: int = 50, 
    repetition_penalty: float = 1.2
):
    """Generates chatbot response and handles TTS requests with multimodal support"""
    text = input_dict.get("text", "")
    files = input_dict.get("files", [])
    
    # Handle multimodal OCR processing
    if files:
        images = [load_image(image) for image in files]
    else:
        images = []
    
    # Check if the message is TTS request
    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 9))
    voice_index = next((i for i in range(1, 9) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
    
    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()

    # If images are provided, combine image and text for the prompt
    if images:
        # Prepare images as part of the conversation
        messages = [
            {
                "role": "user",
                "content": [
                    *[{"type": "image", "image": image} for image in images],
                    {"type": "text", "text": text},
                ],
            }
        ]
        prompt = ocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = ocr_processor(
            text=[prompt],
            images=images,
            return_tensors="pt",
            padding=True,
        ).to("cuda")

    else:
        # Normal text-only input
        conversation = [*history, {"role": "user", "content": text}]
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)

        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generate_kwargs = dict(
            {"input_ids": input_ids},
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            num_beams=1,
            repetition_penalty=repetition_penalty,
        )

        # Start generation in a separate thread
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()

        # Collect generated text
        outputs = []
        for text in streamer:
            outputs.append(text)
            yield "".join(outputs)
        final_response = "".join(outputs)

    # Handle text-to-speech
    if is_tts and voice:
        output_file = asyncio.run(text_to_speech(final_response, voice))
        yield gr.Audio(output_file, autoplay=True)  # Return playable audio
    else:
        yield final_response  # Return text response

# Gradio Interface
demo = gr.Interface(
    fn=generate,
    inputs=[
        gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),  # Multimodal input
        gr.Textbox(label="Chat History", value="", placeholder="Previous conversation history"),
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    outputs=["text", "audio"],
    examples=[
        ["@tts1 Who is Nikola Tesla, and why did he die?"],
        ["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
        ["Write a Python function to check if a number is prime."],
        ["@tts2 What causes rainbows to form?"],
        ["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
        ["@tts5 What is the capital of France?"],
    ],
    stop_btn="Stop Generation",
    description="QwQ Edge: A Chatbot with Text-to-Speech and Multimodal Support",
    css=css,
    fill_height=True,
)

if __name__ == "__main__":
    demo.launch()