Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,172 +1,234 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers.image_utils import load_image
|
3 |
-
from threading import Thread
|
4 |
-
import time
|
5 |
-
import torch
|
6 |
import spaces
|
7 |
-
import cv2
|
8 |
import numpy as np
|
|
|
|
|
|
|
9 |
from PIL import Image
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
# Build content list
|
110 |
-
content = [{"type": "text", "text": text}]
|
111 |
-
for label, img in image_list:
|
112 |
-
content.append({"type": "text", "text": label})
|
113 |
-
content.append({"type": "image", "image": img})
|
114 |
-
|
115 |
-
messages = [{"role": "user", "content": content}]
|
116 |
-
|
117 |
-
# Select processor and model
|
118 |
-
if use_docscopeocr:
|
119 |
-
processor = docscopeocr_processor
|
120 |
-
model = docscopeocr_model
|
121 |
-
model_name = "DocScopeOCR"
|
122 |
-
else:
|
123 |
-
processor = qwen_processor
|
124 |
-
model = qwen_model
|
125 |
-
model_name = "Qwen2VL OCR"
|
126 |
-
|
127 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
128 |
-
all_images = [item["image"] for item in content if item["type"] == "image"]
|
129 |
-
inputs = processor(
|
130 |
-
text=[prompt_full],
|
131 |
-
images=all_images if all_images else None,
|
132 |
-
return_tensors="pt",
|
133 |
-
padding=True,
|
134 |
-
).to("cuda")
|
135 |
-
|
136 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
137 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
138 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
139 |
-
thread.start()
|
140 |
-
buffer = ""
|
141 |
-
yield progress_bar_html(f"Processing with {model_name}")
|
142 |
-
for new_text in streamer:
|
143 |
-
buffer += new_text
|
144 |
-
buffer = buffer.replace("<|im_end|>", "")
|
145 |
-
time.sleep(0.01)
|
146 |
-
yield buffer
|
147 |
-
|
148 |
-
# Gradio Interface
|
149 |
examples = [
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
153 |
]
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
)
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
import spaces
|
|
|
3 |
import numpy as np
|
4 |
+
import random
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
import torch
|
7 |
from PIL import Image
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
11 |
+
|
12 |
+
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
13 |
+
|
14 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
+
pipe = pipe.to(device)
|
16 |
+
|
17 |
+
pipe.load_lora_weights("strangerzonehf/SD3.5-Turbo-Portrait-LoRA", weight_name="SD3.5-Turbo-Portrait.safetensors")
|
18 |
+
trigger_word = "Turbo Portrait"
|
19 |
+
pipe.fuse_lora(lora_scale=1.0)
|
20 |
+
|
21 |
+
MAX_SEED = np.iinfo(np.int32).max
|
22 |
+
MAX_IMAGE_SIZE = 1024
|
23 |
+
|
24 |
+
# Define styles
|
25 |
+
style_list = [
|
26 |
+
{
|
27 |
+
"name": "3840 x 2160",
|
28 |
+
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
29 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"name": "2560 x 1440",
|
33 |
+
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
34 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "HD+",
|
38 |
+
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
39 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"name": "Style Zero",
|
43 |
+
"prompt": "{prompt}",
|
44 |
+
"negative_prompt": "",
|
45 |
+
},
|
46 |
+
]
|
47 |
+
|
48 |
+
STYLE_NAMES = [style["name"] for style in style_list]
|
49 |
+
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
|
50 |
+
|
51 |
+
grid_sizes = {
|
52 |
+
"2x1": (2, 1),
|
53 |
+
"1x2": (1, 2),
|
54 |
+
"2x2": (2, 2),
|
55 |
+
"2x3": (2, 3),
|
56 |
+
"3x2": (3, 2),
|
57 |
+
"1x1": (1, 1)
|
58 |
+
}
|
59 |
+
|
60 |
+
@spaces.GPU(duration=60)
|
61 |
+
def infer(
|
62 |
+
prompt,
|
63 |
+
negative_prompt="",
|
64 |
+
seed=42,
|
65 |
+
randomize_seed=False,
|
66 |
+
width=1024,
|
67 |
+
height=1024,
|
68 |
+
guidance_scale=7.5,
|
69 |
+
num_inference_steps=10,
|
70 |
+
style="Style Zero",
|
71 |
+
grid_size="1x1",
|
72 |
+
progress=gr.Progress(track_tqdm=True),
|
73 |
+
):
|
74 |
+
selected_style = next(s for s in style_list if s["name"] == style)
|
75 |
+
styled_prompt = selected_style["prompt"].format(prompt=prompt)
|
76 |
+
styled_negative_prompt = selected_style["negative_prompt"]
|
77 |
+
|
78 |
+
if randomize_seed:
|
79 |
+
seed = random.randint(0, MAX_SEED)
|
80 |
+
|
81 |
+
generator = torch.Generator().manual_seed(seed)
|
82 |
+
|
83 |
+
grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1))
|
84 |
+
num_images = grid_size_x * grid_size_y
|
85 |
+
|
86 |
+
options = {
|
87 |
+
"prompt": styled_prompt,
|
88 |
+
"negative_prompt": styled_negative_prompt,
|
89 |
+
"guidance_scale": guidance_scale,
|
90 |
+
"num_inference_steps": num_inference_steps,
|
91 |
+
"width": width,
|
92 |
+
"height": height,
|
93 |
+
"generator": generator,
|
94 |
+
"num_images_per_prompt": num_images,
|
95 |
+
}
|
96 |
+
|
97 |
+
torch.cuda.empty_cache() # Clear GPU memory
|
98 |
+
result = pipe(**options)
|
99 |
+
|
100 |
+
grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))
|
101 |
+
|
102 |
+
for i, img in enumerate(result.images[:num_images]):
|
103 |
+
grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
|
104 |
+
|
105 |
+
return grid_img, seed
|
106 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
examples = [
|
108 |
+
"A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
|
109 |
+
"An anime-style illustration of a delicious, golden-brown wiener schnitzel on a plate, served with fresh lemon slices, parsley --style raw5",
|
110 |
+
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic",
|
111 |
+
"A cat holding a sign that says hello world --ar 85:128 --v 6.0 --style raw"
|
112 |
]
|
113 |
|
114 |
+
css = '''
|
115 |
+
.gradio-container{max-width: 585px !important}
|
116 |
+
h1{text-align:center}
|
117 |
+
footer {
|
118 |
+
visibility: hidden
|
119 |
+
}
|
120 |
+
'''
|
121 |
+
|
122 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
123 |
+
with gr.Column(elem_id="col-container"):
|
124 |
+
gr.Markdown("## GRID 6X🪨")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
prompt = gr.Text(
|
128 |
+
label="Prompt",
|
129 |
+
show_label=False,
|
130 |
+
max_lines=1,
|
131 |
+
placeholder="Enter your prompt",
|
132 |
+
container=False,
|
133 |
+
)
|
134 |
+
|
135 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
136 |
+
|
137 |
+
result = gr.Image(label="Result", show_label=False)
|
138 |
+
|
139 |
+
|
140 |
+
with gr.Row(visible=True):
|
141 |
+
grid_size_selection = gr.Dropdown(
|
142 |
+
choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
|
143 |
+
value="1x1",
|
144 |
+
label="Grid Size"
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Accordion("Advanced Settings", open=False):
|
148 |
+
negative_prompt = gr.Text(
|
149 |
+
label="Negative prompt",
|
150 |
+
max_lines=1,
|
151 |
+
placeholder="Enter a negative prompt",
|
152 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
153 |
+
visible=False,
|
154 |
+
)
|
155 |
+
|
156 |
+
seed = gr.Slider(
|
157 |
+
label="Seed",
|
158 |
+
minimum=0,
|
159 |
+
maximum=MAX_SEED,
|
160 |
+
step=1,
|
161 |
+
value=0,
|
162 |
+
)
|
163 |
+
|
164 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
width = gr.Slider(
|
168 |
+
label="Width",
|
169 |
+
minimum=512,
|
170 |
+
maximum=MAX_IMAGE_SIZE,
|
171 |
+
step=32,
|
172 |
+
value=1024,
|
173 |
+
)
|
174 |
+
|
175 |
+
height = gr.Slider(
|
176 |
+
label="Height",
|
177 |
+
minimum=512,
|
178 |
+
maximum=MAX_IMAGE_SIZE,
|
179 |
+
step=32,
|
180 |
+
value=1024,
|
181 |
+
)
|
182 |
+
|
183 |
+
with gr.Row():
|
184 |
+
guidance_scale = gr.Slider(
|
185 |
+
label="Guidance scale",
|
186 |
+
minimum=0.0,
|
187 |
+
maximum=7.5,
|
188 |
+
step=0.1,
|
189 |
+
value=0.0,
|
190 |
+
)
|
191 |
+
|
192 |
+
num_inference_steps = gr.Slider(
|
193 |
+
label="Number of inference steps",
|
194 |
+
minimum=1,
|
195 |
+
maximum=50,
|
196 |
+
step=1,
|
197 |
+
value=8,
|
198 |
+
)
|
199 |
+
|
200 |
+
style_selection = gr.Radio(
|
201 |
+
show_label=True,
|
202 |
+
container=True,
|
203 |
+
interactive=True,
|
204 |
+
choices=STYLE_NAMES,
|
205 |
+
value=DEFAULT_STYLE_NAME,
|
206 |
+
label="Quality Style",
|
207 |
+
)
|
208 |
+
|
209 |
+
gr.Examples(examples=examples,
|
210 |
+
inputs=[prompt],
|
211 |
+
outputs=[result, seed],
|
212 |
+
fn=infer,
|
213 |
+
cache_examples=False)
|
214 |
+
|
215 |
+
gr.on(
|
216 |
+
triggers=[run_button.click, prompt.submit],
|
217 |
+
fn=infer,
|
218 |
+
inputs=[
|
219 |
+
prompt,
|
220 |
+
negative_prompt,
|
221 |
+
seed,
|
222 |
+
randomize_seed,
|
223 |
+
width,
|
224 |
+
height,
|
225 |
+
guidance_scale,
|
226 |
+
num_inference_steps,
|
227 |
+
style_selection,
|
228 |
+
grid_size_selection,
|
229 |
+
],
|
230 |
+
outputs=[result, seed],
|
231 |
+
)
|
232 |
+
|
233 |
+
if __name__ == "__main__":
|
234 |
+
demo.launch(ssr_mode=False, show_error=True)
|