Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import torch | |
from diffusers import DiffusionPipeline | |
import spaces | |
# Setup | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo" | |
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
pipe.load_lora_weights("strangerzonehf/SD3.5-Turbo-Portrait-LoRA", weight_name="SD3.5-Turbo-Portrait.safetensors") | |
pipe.fuse_lora(lora_scale=1.0) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# Style presets | |
style_list = [ | |
{ | |
"name": "3840 x 2160", | |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
}, | |
{ | |
"name": "2560 x 1440", | |
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
}, | |
{ | |
"name": "HD+", | |
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", | |
}, | |
{ | |
"name": "Style Zero", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
] | |
STYLE_NAMES = [s["name"] for s in style_list] | |
def randomize_seed_fn(seed, randomize): | |
return random.randint(0, MAX_SEED) if randomize else seed | |
def save_image(img): | |
filename = str(uuid.uuid4()) + ".png" | |
img.save(filename) | |
return filename | |
def generate_images( | |
prompt, | |
style, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
num_images, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
seed = randomize_seed_fn(seed, randomize_seed) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
selected_style = next(s for s in style_list if s["name"] == style) | |
styled_prompt = selected_style["prompt"].format(prompt=prompt) | |
styled_negative_prompt = selected_style["negative_prompt"] if not negative_prompt else negative_prompt | |
images = [] | |
for _ in range(num_images): | |
image = pipe( | |
prompt=styled_prompt, | |
negative_prompt=styled_negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator | |
).images[0] | |
images.append(image) | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
# CSS & Interface | |
css = ''' | |
.gradio-container { | |
max-width: 150%; | |
margin: 0 auto; | |
} | |
h1 { text-align: center; } | |
footer { visibility: hidden; } | |
''' | |
examples = [ | |
"portrait photo of a futuristic astronaut", | |
"macro shot of a water droplet on a leaf", | |
"hyper-realistic food photography of a burger", | |
"cyberpunk city at night, rain, neon lights", | |
"ultra detailed fantasy landscape with dragons", | |
] | |
with gr.Blocks(css=css, theme="YTheme/GMaterial") as demo: | |
gr.Markdown("## SD3.5 Turbo Portrait") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
prompt = gr.Text( | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result_gallery = gr.Gallery(show_label=False, format="png", columns=2, object_fit="contain") | |
with gr.Accordion("Advanced Settings", open=False): | |
num_images = gr.Slider( | |
label="Number of Images", | |
minimum=1, | |
maximum=10, | |
value=5, | |
step=1, | |
) | |
style = gr.Dropdown(label="Select Style", choices=STYLE_NAMES, value=STYLE_NAMES[0]) | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
max_lines=4, | |
lines=3, | |
value="cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly" | |
) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024) | |
with gr.Row(): | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.5, value=0.0) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=30, step=1, value=4) | |
with gr.Column(scale=1): | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
cache_examples=False, | |
) | |
gr.on( | |
triggers=[prompt.submit, run_button.click], | |
fn=generate_images, | |
inputs=[ | |
prompt, | |
style, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
num_images | |
], | |
outputs=[result_gallery, seed], | |
api_name="generate" | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=40).launch(ssr_mode=False) |