File size: 6,028 Bytes
e14e6d1
 
 
a85c4cf
221d2b6
b3a3e40
e14e6d1
 
 
8110123
e14e6d1
8110123
 
 
 
 
 
 
 
 
 
 
 
e14e6d1
8110123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e14e6d1
8110123
e14e6d1
 
 
 
 
 
 
8110123
ec94f98
e14e6d1
8110123
e14e6d1
 
 
 
 
 
 
 
 
 
8110123
e14e6d1
 
 
8110123
 
e14e6d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8110123
e14e6d1
 
 
8110123
e14e6d1
 
8110123
 
e14e6d1
 
 
 
 
 
 
8110123
e14e6d1
8e84f67
8110123
e14e6d1
 
8110123
e14e6d1
 
 
 
 
8110123
e14e6d1
8110123
e14e6d1
8110123
e14e6d1
 
 
8110123
e14e6d1
 
8110123
 
e14e6d1
8110123
e14e6d1
 
 
 
 
 
 
 
 
 
 
 
2f5446b
 
e14e6d1
 
 
 
 
 
 
8110123
 
e14e6d1
 
8110123
 
e14e6d1
8110123
 
 
 
 
 
 
e14e6d1
8110123
e14e6d1
 
8110123
 
 
e14e6d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import DiffusionPipeline
import spaces

# Setup
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
pipe.load_lora_weights("strangerzonehf/SD3.5-Turbo-Portrait-LoRA", weight_name="SD3.5-Turbo-Portrait.safetensors")
pipe.fuse_lora(lora_scale=1.0)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Style presets
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

STYLE_NAMES = [s["name"] for s in style_list]

def randomize_seed_fn(seed, randomize):
    return random.randint(0, MAX_SEED) if randomize else seed

def save_image(img):
    filename = str(uuid.uuid4()) + ".png"
    img.save(filename)
    return filename

@spaces.GPU
def generate_images(
    prompt,
    style,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    num_images,
    progress=gr.Progress(track_tqdm=True)
):
    seed = randomize_seed_fn(seed, randomize_seed)
    generator = torch.Generator(device=device).manual_seed(seed)

    selected_style = next(s for s in style_list if s["name"] == style)
    styled_prompt = selected_style["prompt"].format(prompt=prompt)
    styled_negative_prompt = selected_style["negative_prompt"] if not negative_prompt else negative_prompt

    images = []
    for _ in range(num_images):
        image = pipe(
            prompt=styled_prompt,
            negative_prompt=styled_negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator
        ).images[0]
        images.append(image)

    image_paths = [save_image(img) for img in images]
    return image_paths, seed

# CSS & Interface
css = '''
.gradio-container {
    max-width: 150%;
    margin: 0 auto;
}
h1 { text-align: center; }
footer { visibility: hidden; }
'''

examples = [
    "portrait photo of a futuristic astronaut",
    "macro shot of a water droplet on a leaf",
    "hyper-realistic food photography of a burger",
    "cyberpunk city at night, rain, neon lights",
    "ultra detailed fantasy landscape with dragons",
]

with gr.Blocks(css=css, theme="YTheme/GMaterial") as demo:
    gr.Markdown("## SD3.5 Turbo Portrait")

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Row():
                prompt = gr.Text(
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run", scale=0, variant="primary")

            result_gallery = gr.Gallery(show_label=False, format="png", columns=2, object_fit="contain")

            with gr.Accordion("Advanced Settings", open=False):
                num_images = gr.Slider(
                    label="Number of Images",
                    minimum=1,
                    maximum=10,
                    value=5,
                    step=1,
                )
                style = gr.Dropdown(label="Select Style", choices=STYLE_NAMES, value=STYLE_NAMES[0])

                negative_prompt = gr.Text(
                    label="Negative Prompt",
                    max_lines=4,
                    lines=3,
                    value="cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly"
                )
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024)
                with gr.Row():
                    guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.5, value=0.0)
                    num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=30, step=1, value=4)

        with gr.Column(scale=1):
            gr.Examples(
                examples=examples,
                inputs=prompt,
                cache_examples=False,
            )

    gr.on(
        triggers=[prompt.submit, run_button.click],
        fn=generate_images,
        inputs=[
            prompt,
            style,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            num_images
        ],
        outputs=[result_gallery, seed],
        api_name="generate"
    )

if __name__ == "__main__":
    demo.queue(max_size=40).launch(ssr_mode=False)