prithivMLmods commited on
Commit
bd9e53d
·
verified ·
1 Parent(s): 0ca6756

upload app

Browse files
Files changed (3) hide show
  1. app.py +544 -0
  2. pre-requirements.txt +1 -0
  3. requirements.txt +31 -0
app.py ADDED
@@ -0,0 +1,544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import copy
4
+ import math
5
+ import time
6
+ import random
7
+ import logging
8
+ import numpy as np
9
+ from typing import Any, Dict, List, Optional, Union
10
+ import torch
11
+ from PIL import Image
12
+ import gradio as gr
13
+ import spaces
14
+ from diffusers import (
15
+ DiffusionPipeline,
16
+ FlowMatchEulerDiscreteScheduler)
17
+ from huggingface_hub import (
18
+ hf_hub_download,
19
+ HfFileSystem,
20
+ ModelCard,
21
+ snapshot_download)
22
+ from diffusers.utils import load_image
23
+ import requests
24
+ from urllib.parse import urlparse
25
+ import tempfile
26
+ import shutil
27
+ import uuid
28
+ import zipfile
29
+
30
+
31
+ # META: CUDA_CHECK / GPU_INFO
32
+ device = "cuda" if torch.cuda.is_available() else "cpu"
33
+ print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
34
+ print("torch.__version__ =", torch.__version__)
35
+ print("torch.version.cuda =", torch.version.cuda)
36
+ print("cuda available:", torch.cuda.is_available())
37
+ print("cuda device count:", torch.cuda.device_count())
38
+ if torch.cuda.is_available():
39
+ print("current device:", torch.cuda.current_device())
40
+ print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
41
+
42
+ print("Using device:", device)
43
+
44
+ loras = [
45
+ # Sample Qwen-compatible LoRAs
46
+ {
47
+ "image": "https://huggingface.co/damnthatai/Game_Boy_Camera_Pixel_Style_Qwen/resolve/main/images/20250818090201_Qwen8s_00001_.jpg",
48
+ "title": "Camera Pixel Style",
49
+ "repo": "damnthatai/Game_Boy_Camera_Pixel_Style_Qwen",
50
+ "weights": "g4m3b0yc4m3r4_qwen.safetensors",
51
+ "trigger_word": "g4m3b0yc4m3r4, grayscale, pixel photo, color photo"
52
+ },
53
+ {
54
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png",
55
+ "title": "Studio Realism",
56
+ "repo": "prithivMLmods/Qwen-Image-Studio-Realism",
57
+ "weights": "qwen-studio-realism.safetensors",
58
+ "trigger_word": "Studio Realism"
59
+ },
60
+ {
61
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png",
62
+ "title": "Sketch Smudge",
63
+ "repo": "prithivMLmods/Qwen-Image-Sketch-Smudge",
64
+ "weights": "qwen-sketch-smudge.safetensors",
65
+ "trigger_word": "Sketch Smudge"
66
+ },
67
+ {
68
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png",
69
+ "title": "Qwen Anime",
70
+ "repo": "prithivMLmods/Qwen-Image-Anime-LoRA",
71
+ "weights": "qwen-anime.safetensors",
72
+ "trigger_word": "Qwen Anime"
73
+ },
74
+ {
75
+ "image": "https://huggingface.co/damnthatai/Apple_QuickTake_150_Digital_Camera_Qwen/resolve/main/images/20250817084713_Qwen.jpg",
76
+ "title": "Apple QuickTake 150 Digital Camera",
77
+ "repo": "damnthatai/Apple_QuickTake_150_Digital_Camera_Qwen",
78
+ "weights": "quicktake150style_qwen.safetensors",
79
+ "trigger_word": "quicktake150style"
80
+ },
81
+ {
82
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png",
83
+ "title": "Synthetic Face",
84
+ "repo": "prithivMLmods/Qwen-Image-Synthetic-Face",
85
+ "weights": "qwen-synthetic-face.safetensors",
86
+ "trigger_word": "Synthetic Face"
87
+ },
88
+ {
89
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png",
90
+ "title": "Fragmented Portraiture",
91
+ "repo": "prithivMLmods/Qwen-Image-Fragmented-Portraiture",
92
+ "weights": "qwen-fragmented-portraiture.safetensors",
93
+ "trigger_word": "Fragmented Portraiture"
94
+ },
95
+ {
96
+ "image": "https://huggingface.co/Tomechi02/Macne_style_enahncer/resolve/main/images/pixai-1913880604374308947-2.png",
97
+ "title": "Macne Style Enahncer",
98
+ "repo": "Tomechi02/Macne_style_enahncer",
99
+ "weights": "Macne_Style_enhancer.safetensors",
100
+ "trigger_word": "macloid, gomoku"
101
+ },
102
+ {
103
+ "image": "https://huggingface.co/itspoidaman/qwenglitch/resolve/main/images/GyZTwJIbkAAhS4h.jpeg",
104
+ "title": "Qwen Glitch",
105
+ "repo": "itspoidaman/qwenglitch",
106
+ "weights": "qwenglitch1.safetensors",
107
+ "trigger_word": "qwenglitch"
108
+ },
109
+ {
110
+ "image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg",
111
+ "title": "Modern Anime Lora",
112
+ "repo": "alfredplpl/qwen-image-modern-anime-lora",
113
+ "weights": "lora.safetensors",
114
+ "trigger_word": "Japanese modern anime style"
115
+ },
116
+ ]
117
+
118
+ # Initialize the base model
119
+ dtype = torch.bfloat16
120
+ base_model = "Qwen/Qwen-Image"
121
+
122
+ # Scheduler configuration from the Qwen-Image-Lightning repository
123
+ scheduler_config = {
124
+ "base_image_seq_len": 256,
125
+ "base_shift": math.log(3),
126
+ "invert_sigmas": False,
127
+ "max_image_seq_len": 8192,
128
+ "max_shift": math.log(3),
129
+ "num_train_timesteps": 1000,
130
+ "shift": 1.0,
131
+ "shift_terminal": None,
132
+ "stochastic_sampling": False,
133
+ "time_shift_type": "exponential",
134
+ "use_beta_sigmas": False,
135
+ "use_dynamic_shifting": True,
136
+ "use_exponential_sigmas": False,
137
+ "use_karras_sigmas": False,
138
+ }
139
+
140
+ scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
141
+ pipe = DiffusionPipeline.from_pretrained(
142
+ base_model, scheduler=scheduler, torch_dtype=dtype
143
+ ).to(device)
144
+
145
+ # Lightning LoRA info (no global state)
146
+ LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
147
+ LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
148
+
149
+ MAX_SEED = np.iinfo(np.int32).max
150
+
151
+ class Timer:
152
+ def __init__(self, task_name=""):
153
+ self.task_name = task_name
154
+
155
+ def __enter__(self):
156
+ self.start_time = time.time()
157
+ return self
158
+
159
+ def __exit__(self, exc_type, exc_value, traceback):
160
+ self.end_time = time.time()
161
+ self.elapsed_time = self.end_time - self.start_time
162
+ if self.task_name:
163
+ print(f"Elapsed time for {self.task_name}: {self.elapsed_time:.6f} seconds")
164
+ else:
165
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
166
+
167
+ def compute_image_dimensions(aspect_ratio):
168
+ """Converts aspect ratio string to width, height tuple."""
169
+ if aspect_ratio == "1:1":
170
+ return 1024, 1024
171
+ elif aspect_ratio == "16:9":
172
+ return 1152, 640
173
+ elif aspect_ratio == "9:16":
174
+ return 640, 1152
175
+ elif aspect_ratio == "4:3":
176
+ return 1024, 768
177
+ elif aspect_ratio == "3:4":
178
+ return 768, 1024
179
+ elif aspect_ratio == "3:2":
180
+ return 1024, 688
181
+ elif aspect_ratio == "2:3":
182
+ return 688, 1024
183
+ else:
184
+ return 1024, 1024
185
+
186
+ def handle_lora_selection(evt: gr.SelectData, aspect_ratio):
187
+ selected_lora = loras[evt.index]
188
+ new_placeholder = f"Type a prompt for {selected_lora['title']}"
189
+ lora_repo = selected_lora["repo"]
190
+ updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
191
+
192
+ # Update aspect ratio if specified in LoRA config
193
+ if "aspect" in selected_lora:
194
+ if selected_lora["aspect"] == "portrait":
195
+ aspect_ratio = "9:16"
196
+ elif selected_lora["aspect"] == "landscape":
197
+ aspect_ratio = "16:9"
198
+ else:
199
+ aspect_ratio = "1:1"
200
+
201
+ return (
202
+ gr.update(placeholder=new_placeholder),
203
+ updated_text,
204
+ evt.index,
205
+ aspect_ratio,
206
+ )
207
+
208
+ def adjust_generation_mode(speed_mode):
209
+ """Update UI based on speed/quality toggle."""
210
+ if speed_mode == "Speed (8 steps)":
211
+ return gr.update(value="Speed mode selected - 8 steps with Lightning LoRA"), 8, 1.0
212
+ else:
213
+ return gr.update(value="Quality mode selected - 48 steps for best quality"), 48, 3.5
214
+
215
+ @spaces.GPU(duration=108)
216
+ def create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
217
+ pipe.to("cuda")
218
+ generator = torch.Generator(device="cuda").manual_seed(seed)
219
+
220
+ with Timer("Generating image"):
221
+ # Generate image
222
+ image = pipe(
223
+ prompt=prompt_mash,
224
+ negative_prompt=negative_prompt,
225
+ num_inference_steps=steps,
226
+ true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
227
+ width=width,
228
+ height=height,
229
+ generator=generator,
230
+ ).images[0]
231
+
232
+ return image
233
+
234
+ @spaces.GPU(duration=108)
235
+ def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
236
+ if selected_index is None:
237
+ raise gr.Error("You must select a LoRA before proceeding.")
238
+
239
+ selected_lora = loras[selected_index]
240
+ lora_path = selected_lora["repo"]
241
+ trigger_word = selected_lora["trigger_word"]
242
+
243
+ # Prepare prompt with trigger word
244
+ if trigger_word:
245
+ if "trigger_position" in selected_lora:
246
+ if selected_lora["trigger_position"] == "prepend":
247
+ prompt_mash = f"{trigger_word} {prompt}"
248
+ else:
249
+ prompt_mash = f"{prompt} {trigger_word}"
250
+ else:
251
+ prompt_mash = f"{trigger_word} {prompt}"
252
+ else:
253
+ prompt_mash = prompt
254
+
255
+ # Always unload any existing LoRAs first to avoid conflicts
256
+ with Timer("Unloading existing LoRAs"):
257
+ pipe.unload_lora_weights()
258
+
259
+ # Load LoRAs based on speed mode
260
+ if speed_mode == "Speed (8 steps)":
261
+ with Timer("Loading Lightning LoRA and style LoRA"):
262
+ # Load Lightning LoRA first
263
+ pipe.load_lora_weights(
264
+ LIGHTNING_LORA_REPO,
265
+ weight_name=LIGHTNING_LORA_WEIGHT,
266
+ adapter_name="lightning"
267
+ )
268
+
269
+ # Load the selected style LoRA
270
+ weight_name = selected_lora.get("weights", None)
271
+ pipe.load_lora_weights(
272
+ lora_path,
273
+ weight_name=weight_name,
274
+ low_cpu_mem_usage=True,
275
+ adapter_name="style"
276
+ )
277
+
278
+ # Set both adapters active with their weights
279
+ pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
280
+ else:
281
+ # Quality mode - only load the style LoRA
282
+ with Timer(f"Loading LoRA weights for {selected_lora['title']}"):
283
+ weight_name = selected_lora.get("weights", None)
284
+ pipe.load_lora_weights(
285
+ lora_path,
286
+ weight_name=weight_name,
287
+ low_cpu_mem_usage=True
288
+ )
289
+
290
+ # Set random seed for reproducibility
291
+ with Timer("Randomizing seed"):
292
+ if randomize_seed:
293
+ seed = random.randint(0, MAX_SEED)
294
+
295
+ # Get image dimensions from aspect ratio
296
+ width, height = compute_image_dimensions(aspect_ratio)
297
+
298
+ # Generate the image
299
+ final_image = create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
300
+
301
+ return final_image, seed
302
+
303
+ def fetch_hf_adapter_files(link):
304
+ split_link = link.split("/")
305
+ if len(split_link) != 2:
306
+ raise Exception("Invalid Hugging Face repository link format.")
307
+
308
+ print(f"Repository attempted: {split_link}")
309
+
310
+ # Load model card
311
+ model_card = ModelCard.load(link)
312
+ base_model = model_card.data.get("base_model")
313
+ print(f"Base model: {base_model}")
314
+
315
+ # Validate model type (for Qwen-Image)
316
+ acceptable_models = {"Qwen/Qwen-Image"}
317
+
318
+ models_to_check = base_model if isinstance(base_model, list) else [base_model]
319
+
320
+ if not any(model in acceptable_models for model in models_to_check):
321
+ raise Exception("Not a Qwen-Image LoRA!")
322
+
323
+ # Extract image and trigger word
324
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
325
+ trigger_word = model_card.data.get("instance_prompt", "")
326
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
327
+
328
+ # Initialize Hugging Face file system
329
+ fs = HfFileSystem()
330
+ try:
331
+ list_of_files = fs.ls(link, detail=False)
332
+
333
+ # Find safetensors file
334
+ safetensors_name = None
335
+ for file in list_of_files:
336
+ filename = file.split("/")[-1]
337
+ if filename.endswith(".safetensors"):
338
+ safetensors_name = filename
339
+ break
340
+
341
+ if not safetensors_name:
342
+ raise Exception("No valid *.safetensors file found in the repository.")
343
+
344
+ except Exception as e:
345
+ print(e)
346
+ raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
347
+
348
+ return split_link[1], link, safetensors_name, trigger_word, image_url
349
+
350
+ def validate_custom_adapter(link):
351
+ print(f"Checking a custom model on: {link}")
352
+
353
+ if link.endswith('.safetensors'):
354
+ if 'huggingface.co' in link:
355
+ parts = link.split('/')
356
+ try:
357
+ hf_index = parts.index('huggingface.co')
358
+ username = parts[hf_index + 1]
359
+ repo_name = parts[hf_index + 2]
360
+ repo = f"{username}/{repo_name}"
361
+
362
+ safetensors_name = parts[-1]
363
+
364
+ try:
365
+ model_card = ModelCard.load(repo)
366
+ trigger_word = model_card.data.get("instance_prompt", "")
367
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
368
+ image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
369
+ except:
370
+ trigger_word = ""
371
+ image_url = None
372
+
373
+ return repo_name, repo, safetensors_name, trigger_word, image_url
374
+ except:
375
+ raise Exception("Invalid safetensors URL format")
376
+
377
+ if link.startswith("https://"):
378
+ if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
379
+ link_split = link.split("huggingface.co/")
380
+ return fetch_hf_adapter_files(link_split[1])
381
+ else:
382
+ return fetch_hf_adapter_files(link)
383
+
384
+ def incorporate_custom_adapter(custom_lora):
385
+ global loras
386
+ if custom_lora:
387
+ try:
388
+ title, repo, path, trigger_word, image = validate_custom_adapter(custom_lora)
389
+ print(f"Loaded custom LoRA: {repo}")
390
+ card = f'''
391
+ <div class="custom_lora_card">
392
+ <span>Loaded custom LoRA:</span>
393
+ <div class="card_internal">
394
+ <img src="{image}" />
395
+ <div>
396
+ <h3>{title}</h3>
397
+ <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
398
+ </div>
399
+ </div>
400
+ </div>
401
+ '''
402
+ existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
403
+ if existing_item_index is None:
404
+ new_item = {
405
+ "image": image,
406
+ "title": title,
407
+ "repo": repo,
408
+ "weights": path,
409
+ "trigger_word": trigger_word
410
+ }
411
+ print(new_item)
412
+ loras.append(new_item)
413
+ existing_item_index = len(loras) - 1 # Get the actual index after adding
414
+
415
+ return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
416
+ except Exception as e:
417
+ gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
418
+ return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
419
+ else:
420
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
421
+
422
+ def discard_custom_adapter():
423
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
424
+
425
+ process_adapter_generation.zerogpu = True
426
+
427
+ css = '''
428
+ #gen_btn{height: 100%}
429
+ #gen_column{align-self: stretch}
430
+ #title{text-align: center}
431
+ #title h1{font-size: 3em; display:inline-flex; align-items:center}
432
+ #title img{width: 100px; margin-right: 0.5em}
433
+ #gallery .grid-wrap{height: 10vh}
434
+ #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
435
+ .card_internal{display: flex;height: 100px;margin-top: .5em}
436
+ .card_internal img{margin-right: 1em}
437
+ .styler{--form-gap-width: 0px !important}
438
+ #speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
439
+ '''
440
+
441
+ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
442
+ title = gr.HTML("""<h1>Qwen Image LoRA DLC⛵</h1>""", elem_id="title")
443
+ selected_index = gr.State(None)
444
+
445
+ with gr.Row():
446
+ with gr.Column(scale=3):
447
+ prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
448
+ with gr.Column(scale=1, elem_id="gen_column"):
449
+ generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
450
+
451
+ with gr.Row():
452
+ with gr.Column():
453
+ selected_info = gr.Markdown("")
454
+ gallery = gr.Gallery(
455
+ [(item["image"], item["title"]) for item in loras],
456
+ label="LoRA Gallery",
457
+ allow_preview=False,
458
+ columns=3,
459
+ elem_id="gallery",
460
+ show_share_button=False
461
+ )
462
+ with gr.Group():
463
+ custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora")
464
+ gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
465
+ custom_lora_info = gr.HTML(visible=False)
466
+ custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
467
+
468
+ with gr.Column():
469
+ result = gr.Image(label="Generated Image")
470
+
471
+ with gr.Row():
472
+ aspect_ratio = gr.Dropdown(
473
+ label="Aspect Ratio",
474
+ choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
475
+ value="1:1"
476
+ )
477
+ with gr.Row():
478
+ speed_mode = gr.Dropdown(
479
+ label="Generation Mode",
480
+ choices=["Speed (8 steps)", "Quality (45 steps)"],
481
+ value="Quality (45 steps)",
482
+ )
483
+
484
+ speed_status = gr.Markdown("Quality mode active", elem_id="speed_status")
485
+
486
+ with gr.Row():
487
+ with gr.Accordion("Advanced Settings", open=False):
488
+ with gr.Column():
489
+ with gr.Row():
490
+ cfg_scale = gr.Slider(
491
+ label="Guidance Scale (True CFG)",
492
+ minimum=1.0,
493
+ maximum=5.0,
494
+ step=0.1,
495
+ value=3.5,
496
+ info="Lower for speed mode, higher for quality"
497
+ )
498
+ steps = gr.Slider(
499
+ label="Steps",
500
+ minimum=4,
501
+ maximum=50,
502
+ step=1,
503
+ value=45,
504
+ info="Automatically set by speed mode"
505
+ )
506
+
507
+ with gr.Row():
508
+ randomize_seed = gr.Checkbox(True, label="Randomize seed")
509
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
510
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
511
+
512
+ # Event handlers
513
+ gallery.select(
514
+ handle_lora_selection,
515
+ inputs=[aspect_ratio],
516
+ outputs=[prompt, selected_info, selected_index, aspect_ratio]
517
+ )
518
+
519
+ speed_mode.change(
520
+ adjust_generation_mode,
521
+ inputs=[speed_mode],
522
+ outputs=[speed_status, steps, cfg_scale]
523
+ )
524
+
525
+ custom_lora.input(
526
+ incorporate_custom_adapter,
527
+ inputs=[custom_lora],
528
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
529
+ )
530
+
531
+ custom_lora_button.click(
532
+ discard_custom_adapter,
533
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
534
+ )
535
+
536
+ gr.on(
537
+ triggers=[generate_button.click, prompt.submit],
538
+ fn=process_adapter_generation,
539
+ inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
540
+ outputs=[result, seed]
541
+ )
542
+
543
+ app.queue()
544
+ app.launch(share=False, ssr_mode=False, show_error=True)
pre-requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ pip>=23.0.0
requirements.txt ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ git+https://github.com/huggingface/transformers.git
2
+ git+https://github.com/huggingface/accelerate.git
3
+ git+https://github.com/huggingface/diffusers.git
4
+ git+https://github.com/huggingface/peft.git
5
+ transformers-stream-generator
6
+ huggingface_hub
7
+ albumentations
8
+ qwen-vl-utils
9
+ pyvips-binary
10
+ sentencepiece
11
+ opencv-python
12
+ docling-core
13
+ python-docx
14
+ torchvision
15
+ safetensors
16
+ matplotlib
17
+ num2words
18
+ reportlab
19
+ xformers
20
+ requests
21
+ pymupdf
22
+ hf_xet
23
+ spaces
24
+ pyvips
25
+ pillow
26
+ gradio
27
+ einops
28
+ torch
29
+ fpdf
30
+ timm
31
+ av