prithivMLmods commited on
Commit
8697b5e
·
verified ·
1 Parent(s): 0981a00

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -544
app.py DELETED
@@ -1,544 +0,0 @@
1
- import os
2
- import json
3
- import copy
4
- import math
5
- import time
6
- import random
7
- import logging
8
- import numpy as np
9
- from typing import Any, Dict, List, Optional, Union
10
- import torch
11
- from PIL import Image
12
- import gradio as gr
13
- import spaces
14
- from diffusers import (
15
- DiffusionPipeline,
16
- FlowMatchEulerDiscreteScheduler)
17
- from huggingface_hub import (
18
- hf_hub_download,
19
- HfFileSystem,
20
- ModelCard,
21
- snapshot_download)
22
- from diffusers.utils import load_image
23
- import requests
24
- from urllib.parse import urlparse
25
- import tempfile
26
- import shutil
27
- import uuid
28
- import zipfile
29
-
30
-
31
- # META: CUDA_CHECK / GPU_INFO
32
- device = "cuda" if torch.cuda.is_available() else "cpu"
33
- print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
34
- print("torch.__version__ =", torch.__version__)
35
- print("torch.version.cuda =", torch.version.cuda)
36
- print("cuda available:", torch.cuda.is_available())
37
- print("cuda device count:", torch.cuda.device_count())
38
- if torch.cuda.is_available():
39
- print("current device:", torch.cuda.current_device())
40
- print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
41
-
42
- print("Using device:", device)
43
-
44
- loras = [
45
- # Sample Qwen-compatible LoRAs
46
- {
47
- "image": "https://huggingface.co/damnthatai/Game_Boy_Camera_Pixel_Style_Qwen/resolve/main/images/20250818090201_Qwen8s_00001_.jpg",
48
- "title": "Camera Pixel Style",
49
- "repo": "damnthatai/Game_Boy_Camera_Pixel_Style_Qwen",
50
- "weights": "g4m3b0yc4m3r4_qwen.safetensors",
51
- "trigger_word": "g4m3b0yc4m3r4, grayscale, pixel photo"
52
- },
53
- {
54
- "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png",
55
- "title": "Studio Realism",
56
- "repo": "prithivMLmods/Qwen-Image-Studio-Realism",
57
- "weights": "qwen-studio-realism.safetensors",
58
- "trigger_word": "Studio Realism"
59
- },
60
- {
61
- "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png",
62
- "title": "Sketch Smudge",
63
- "repo": "prithivMLmods/Qwen-Image-Sketch-Smudge",
64
- "weights": "qwen-sketch-smudge.safetensors",
65
- "trigger_word": "Sketch Smudge"
66
- },
67
- {
68
- "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png",
69
- "title": "Qwen Anime",
70
- "repo": "prithivMLmods/Qwen-Image-Anime-LoRA",
71
- "weights": "qwen-anime.safetensors",
72
- "trigger_word": "Qwen Anime"
73
- },
74
- {
75
- "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png",
76
- "title": "Fragmented Portraiture",
77
- "repo": "prithivMLmods/Qwen-Image-Fragmented-Portraiture",
78
- "weights": "qwen-fragmented-portraiture.safetensors",
79
- "trigger_word": "Fragmented Portraiture"
80
- },
81
- {
82
- "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png",
83
- "title": "Synthetic Face",
84
- "repo": "prithivMLmods/Qwen-Image-Synthetic-Face",
85
- "weights": "qwen-synthetic-face.safetensors",
86
- "trigger_word": "Synthetic Face"
87
- },
88
- {
89
- "image": "https://huggingface.co/Tomechi02/Macne_style_enahncer/resolve/main/images/pixai-1913880604374308947-2.png",
90
- "title": "Macne Style Enahncer",
91
- "repo": "Tomechi02/Macne_style_enahncer",
92
- "weights": "Macne_Style_enhancer.safetensors",
93
- "trigger_word": "macloid, gomoku"
94
- },
95
- {
96
- "image": "https://huggingface.co/itspoidaman/qwenglitch/resolve/main/images/GyZTwJIbkAAhS4h.jpeg",
97
- "title": "Qwen Glitch",
98
- "repo": "itspoidaman/qwenglitch",
99
- "weights": "qwenglitch1.safetensors",
100
- "trigger_word": "qwenglitch"
101
- },
102
- {
103
- "image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg",
104
- "title": "Modern Anime Lora",
105
- "repo": "alfredplpl/qwen-image-modern-anime-lora",
106
- "weights": "lora.safetensors",
107
- "trigger_word": "Japanese modern anime style"
108
- },
109
- {
110
- "image": "https://huggingface.co/damnthatai/Apple_QuickTake_150_Digital_Camera_Qwen/resolve/main/images/20250817084713_Qwen.jpg",
111
- "title": "Apple QuickTake 150 Digital Camera",
112
- "repo": "damnthatai/Apple_QuickTake_150_Digital_Camera_Qwen",
113
- "weights": "quicktake150style_qwen.safetensors",
114
- "trigger_word": "quicktake150style"
115
- },
116
- ]
117
-
118
- # Initialize the base model
119
- dtype = torch.bfloat16
120
- base_model = "Qwen/Qwen-Image"
121
-
122
- # Scheduler configuration from the Qwen-Image-Lightning repository
123
- scheduler_config = {
124
- "base_image_seq_len": 256,
125
- "base_shift": math.log(3),
126
- "invert_sigmas": False,
127
- "max_image_seq_len": 8192,
128
- "max_shift": math.log(3),
129
- "num_train_timesteps": 1000,
130
- "shift": 1.0,
131
- "shift_terminal": None,
132
- "stochastic_sampling": False,
133
- "time_shift_type": "exponential",
134
- "use_beta_sigmas": False,
135
- "use_dynamic_shifting": True,
136
- "use_exponential_sigmas": False,
137
- "use_karras_sigmas": False,
138
- }
139
-
140
- scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
141
- pipe = DiffusionPipeline.from_pretrained(
142
- base_model, scheduler=scheduler, torch_dtype=dtype
143
- ).to(device)
144
-
145
- # Lightning LoRA info (no global state)
146
- LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
147
- LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
148
-
149
- MAX_SEED = np.iinfo(np.int32).max
150
-
151
- class Timer:
152
- def __init__(self, task_name=""):
153
- self.task_name = task_name
154
-
155
- def __enter__(self):
156
- self.start_time = time.time()
157
- return self
158
-
159
- def __exit__(self, exc_type, exc_value, traceback):
160
- self.end_time = time.time()
161
- self.elapsed_time = self.end_time - self.start_time
162
- if self.task_name:
163
- print(f"Elapsed time for {self.task_name}: {self.elapsed_time:.6f} seconds")
164
- else:
165
- print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
166
-
167
- def compute_image_dimensions(aspect_ratio):
168
- """Converts aspect ratio string to width, height tuple."""
169
- if aspect_ratio == "1:1":
170
- return 1024, 1024
171
- elif aspect_ratio == "16:9":
172
- return 1152, 640
173
- elif aspect_ratio == "9:16":
174
- return 640, 1152
175
- elif aspect_ratio == "4:3":
176
- return 1024, 768
177
- elif aspect_ratio == "3:4":
178
- return 768, 1024
179
- elif aspect_ratio == "3:2":
180
- return 1024, 688
181
- elif aspect_ratio == "2:3":
182
- return 688, 1024
183
- else:
184
- return 1024, 1024
185
-
186
- def handle_lora_selection(evt: gr.SelectData, aspect_ratio):
187
- selected_lora = loras[evt.index]
188
- new_placeholder = f"Type a prompt for {selected_lora['title']}"
189
- lora_repo = selected_lora["repo"]
190
- updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
191
-
192
- # Update aspect ratio if specified in LoRA config
193
- if "aspect" in selected_lora:
194
- if selected_lora["aspect"] == "portrait":
195
- aspect_ratio = "9:16"
196
- elif selected_lora["aspect"] == "landscape":
197
- aspect_ratio = "16:9"
198
- else:
199
- aspect_ratio = "1:1"
200
-
201
- return (
202
- gr.update(placeholder=new_placeholder),
203
- updated_text,
204
- evt.index,
205
- aspect_ratio,
206
- )
207
-
208
- def adjust_generation_mode(speed_mode):
209
- """Update UI based on speed/quality toggle."""
210
- if speed_mode == "Fast (8 steps)":
211
- return gr.update(value="Fast mode selected - 8 steps with Lightning LoRA"), 8, 1.0
212
- else:
213
- return gr.update(value="Base mode selected - 48 steps for best quality"), 48, 4.0
214
-
215
- @spaces.GPU(duration=108)
216
- def create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
217
- pipe.to("cuda")
218
- generator = torch.Generator(device="cuda").manual_seed(seed)
219
-
220
- with Timer("Generating image"):
221
- # Generate image
222
- image = pipe(
223
- prompt=prompt_mash,
224
- negative_prompt=negative_prompt,
225
- num_inference_steps=steps,
226
- true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
227
- width=width,
228
- height=height,
229
- generator=generator,
230
- ).images[0]
231
-
232
- return image
233
-
234
- @spaces.GPU(duration=108)
235
- def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
236
- if selected_index is None:
237
- raise gr.Error("You must select a LoRA before proceeding.")
238
-
239
- selected_lora = loras[selected_index]
240
- lora_path = selected_lora["repo"]
241
- trigger_word = selected_lora["trigger_word"]
242
-
243
- # Prepare prompt with trigger word
244
- if trigger_word:
245
- if "trigger_position" in selected_lora:
246
- if selected_lora["trigger_position"] == "prepend":
247
- prompt_mash = f"{trigger_word} {prompt}"
248
- else:
249
- prompt_mash = f"{prompt} {trigger_word}"
250
- else:
251
- prompt_mash = f"{trigger_word} {prompt}"
252
- else:
253
- prompt_mash = prompt
254
-
255
- # Always unload any existing LoRAs first to avoid conflicts
256
- with Timer("Unloading existing LoRAs"):
257
- pipe.unload_lora_weights()
258
-
259
- # Load LoRAs based on speed mode
260
- if speed_mode == "Fast (8 steps)":
261
- with Timer("Loading Lightning LoRA and style LoRA"):
262
- # Load Lightning LoRA first
263
- pipe.load_lora_weights(
264
- LIGHTNING_LORA_REPO,
265
- weight_name=LIGHTNING_LORA_WEIGHT,
266
- adapter_name="lightning"
267
- )
268
-
269
- # Load the selected style LoRA
270
- weight_name = selected_lora.get("weights", None)
271
- pipe.load_lora_weights(
272
- lora_path,
273
- weight_name=weight_name,
274
- low_cpu_mem_usage=True,
275
- adapter_name="style"
276
- )
277
-
278
- # Set both adapters active with their weights
279
- pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
280
- else:
281
- # Quality mode - only load the style LoRA
282
- with Timer(f"Loading LoRA weights for {selected_lora['title']}"):
283
- weight_name = selected_lora.get("weights", None)
284
- pipe.load_lora_weights(
285
- lora_path,
286
- weight_name=weight_name,
287
- low_cpu_mem_usage=True
288
- )
289
-
290
- # Set random seed for reproducibility
291
- with Timer("Randomizing seed"):
292
- if randomize_seed:
293
- seed = random.randint(0, MAX_SEED)
294
-
295
- # Get image dimensions from aspect ratio
296
- width, height = compute_image_dimensions(aspect_ratio)
297
-
298
- # Generate the image
299
- final_image = create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
300
-
301
- return final_image, seed
302
-
303
- def fetch_hf_adapter_files(link):
304
- split_link = link.split("/")
305
- if len(split_link) != 2:
306
- raise Exception("Invalid Hugging Face repository link format.")
307
-
308
- print(f"Repository attempted: {split_link}")
309
-
310
- # Load model card
311
- model_card = ModelCard.load(link)
312
- base_model = model_card.data.get("base_model")
313
- print(f"Base model: {base_model}")
314
-
315
- # Validate model type (for Qwen-Image)
316
- acceptable_models = {"Qwen/Qwen-Image"}
317
-
318
- models_to_check = base_model if isinstance(base_model, list) else [base_model]
319
-
320
- if not any(model in acceptable_models for model in models_to_check):
321
- raise Exception("Not a Qwen-Image LoRA!")
322
-
323
- # Extract image and trigger word
324
- image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
325
- trigger_word = model_card.data.get("instance_prompt", "")
326
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
327
-
328
- # Initialize Hugging Face file system
329
- fs = HfFileSystem()
330
- try:
331
- list_of_files = fs.ls(link, detail=False)
332
-
333
- # Find safetensors file
334
- safetensors_name = None
335
- for file in list_of_files:
336
- filename = file.split("/")[-1]
337
- if filename.endswith(".safetensors"):
338
- safetensors_name = filename
339
- break
340
-
341
- if not safetensors_name:
342
- raise Exception("No valid *.safetensors file found in the repository.")
343
-
344
- except Exception as e:
345
- print(e)
346
- raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
347
-
348
- return split_link[1], link, safetensors_name, trigger_word, image_url
349
-
350
- def validate_custom_adapter(link):
351
- print(f"Checking a custom model on: {link}")
352
-
353
- if link.endswith('.safetensors'):
354
- if 'huggingface.co' in link:
355
- parts = link.split('/')
356
- try:
357
- hf_index = parts.index('huggingface.co')
358
- username = parts[hf_index + 1]
359
- repo_name = parts[hf_index + 2]
360
- repo = f"{username}/{repo_name}"
361
-
362
- safetensors_name = parts[-1]
363
-
364
- try:
365
- model_card = ModelCard.load(repo)
366
- trigger_word = model_card.data.get("instance_prompt", "")
367
- image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
368
- image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
369
- except:
370
- trigger_word = ""
371
- image_url = None
372
-
373
- return repo_name, repo, safetensors_name, trigger_word, image_url
374
- except:
375
- raise Exception("Invalid safetensors URL format")
376
-
377
- if link.startswith("https://"):
378
- if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
379
- link_split = link.split("huggingface.co/")
380
- return fetch_hf_adapter_files(link_split[1])
381
- else:
382
- return fetch_hf_adapter_files(link)
383
-
384
- def incorporate_custom_adapter(custom_lora):
385
- global loras
386
- if custom_lora:
387
- try:
388
- title, repo, path, trigger_word, image = validate_custom_adapter(custom_lora)
389
- print(f"Loaded custom LoRA: {repo}")
390
- card = f'''
391
- <div class="custom_lora_card">
392
- <span>Loaded custom LoRA:</span>
393
- <div class="card_internal">
394
- <img src="{image}" />
395
- <div>
396
- <h3>{title}</h3>
397
- <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
398
- </div>
399
- </div>
400
- </div>
401
- '''
402
- existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
403
- if existing_item_index is None:
404
- new_item = {
405
- "image": image,
406
- "title": title,
407
- "repo": repo,
408
- "weights": path,
409
- "trigger_word": trigger_word
410
- }
411
- print(new_item)
412
- loras.append(new_item)
413
- existing_item_index = len(loras) - 1 # Get the actual index after adding
414
-
415
- return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
416
- except Exception as e:
417
- gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
418
- return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
419
- else:
420
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
421
-
422
- def discard_custom_adapter():
423
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
424
-
425
- process_adapter_generation.zerogpu = True
426
-
427
- css = '''
428
- #gen_btn{height: 100%}
429
- #gen_column{align-self: stretch}
430
- #title{text-align: center}
431
- #title h1{font-size: 3em; display:inline-flex; align-items:center}
432
- #title img{width: 100px; margin-right: 0.5em}
433
- #gallery .grid-wrap{height: 10vh}
434
- #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
435
- .card_internal{display: flex;height: 100px;margin-top: .5em}
436
- .card_internal img{margin-right: 1em}
437
- .styler{--form-gap-width: 0px !important}
438
- #speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
439
- '''
440
-
441
- with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
442
- title = gr.HTML("""<h1>Qwen Image LoRA DLC⛵</h1>""", elem_id="title")
443
- selected_index = gr.State(None)
444
-
445
- with gr.Row():
446
- with gr.Column(scale=3):
447
- prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
448
- with gr.Column(scale=1, elem_id="gen_column"):
449
- generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
450
-
451
- with gr.Row():
452
- with gr.Column():
453
- selected_info = gr.Markdown("")
454
- gallery = gr.Gallery(
455
- [(item["image"], item["title"]) for item in loras],
456
- label="LoRA Gallery",
457
- allow_preview=False,
458
- columns=3,
459
- elem_id="gallery",
460
- show_share_button=False
461
- )
462
- with gr.Group():
463
- custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora")
464
- gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
465
- custom_lora_info = gr.HTML(visible=False)
466
- custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
467
-
468
- with gr.Column():
469
- result = gr.Image(label="Generated Image")
470
-
471
- with gr.Row():
472
- aspect_ratio = gr.Dropdown(
473
- label="Aspect Ratio",
474
- choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
475
- value="1:1"
476
- )
477
- with gr.Row():
478
- speed_mode = gr.Dropdown(
479
- label="Generation Mode",
480
- choices=["Fast (8 steps)", "Base (48 steps)"],
481
- value="Base (48 steps)",
482
- )
483
-
484
- speed_status = gr.Markdown("Base mode selected", elem_id="speed_status")
485
-
486
- with gr.Row():
487
- with gr.Accordion("Advanced Settings", open=False):
488
- with gr.Column():
489
- with gr.Row():
490
- cfg_scale = gr.Slider(
491
- label="Guidance Scale (True CFG)",
492
- minimum=1.0,
493
- maximum=5.0,
494
- step=0.1,
495
- value=4.0,
496
- info="Lower for speed mode, higher for quality"
497
- )
498
- steps = gr.Slider(
499
- label="Steps",
500
- minimum=4,
501
- maximum=50,
502
- step=1,
503
- value=48,
504
- info="Automatically set by speed mode"
505
- )
506
-
507
- with gr.Row():
508
- randomize_seed = gr.Checkbox(True, label="Randomize seed")
509
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
510
- lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
511
-
512
- # Event handlers
513
- gallery.select(
514
- handle_lora_selection,
515
- inputs=[aspect_ratio],
516
- outputs=[prompt, selected_info, selected_index, aspect_ratio]
517
- )
518
-
519
- speed_mode.change(
520
- adjust_generation_mode,
521
- inputs=[speed_mode],
522
- outputs=[speed_status, steps, cfg_scale]
523
- )
524
-
525
- custom_lora.input(
526
- incorporate_custom_adapter,
527
- inputs=[custom_lora],
528
- outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
529
- )
530
-
531
- custom_lora_button.click(
532
- discard_custom_adapter,
533
- outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
534
- )
535
-
536
- gr.on(
537
- triggers=[generate_button.click, prompt.submit],
538
- fn=process_adapter_generation,
539
- inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
540
- outputs=[result, seed]
541
- )
542
-
543
- app.queue()
544
- app.launch(share=False, ssr_mode=False, show_error=True)