prithivMLmods commited on
Commit
679aade
·
verified ·
1 Parent(s): ccba23e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +501 -96
app.py CHANGED
@@ -1,125 +1,530 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
  import spaces
 
5
  import torch
6
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
7
- from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
 
 
 
 
 
 
 
8
 
9
- dtype = torch.bfloat16
10
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
11
 
12
- pipe = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-krea-Merge-Transformer", torch_dtype=dtype).to(device)
 
 
 
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
  MAX_IMAGE_SIZE = 2048
16
 
17
- @spaces.GPU()
18
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  if randomize_seed:
20
  seed = random.randint(0, MAX_SEED)
21
  generator = torch.Generator().manual_seed(seed)
22
- image = pipe(
23
- prompt = prompt,
24
- width = width,
25
- height = height,
26
- num_inference_steps = num_inference_steps,
27
- generator = generator,
28
- guidance_scale=guidance_scale
29
- ).images[0]
30
- return image, seed
31
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  examples = [
33
- "a tiny astronaut hatching from an egg on the moon",
34
- "a cat holding a sign that says hello world",
35
- "an anime illustration of a wiener schnitzel",
 
36
  ]
37
 
38
- css="""
39
- #col-container {
40
- margin: 0 auto;
41
- max-width: 520px;
 
 
 
42
  }
43
- """
 
 
 
44
 
45
- with gr.Blocks(css=css) as demo:
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
- with gr.Column(elem_id="col-container"):
48
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  with gr.Row():
50
-
51
- prompt = gr.Text(
52
- label="Prompt",
53
- show_label=False,
54
- max_lines=1,
55
- placeholder="Enter your prompt",
56
- container=False,
57
  )
58
- run_button = gr.Button("Run", scale=0)
59
-
 
 
 
 
 
 
 
 
 
 
 
 
60
  num_inference_steps = gr.Slider(
61
  label="Number of inference steps",
62
  minimum=1,
63
- maximum=50,
64
  step=1,
65
- value=8,
66
  )
67
-
68
- result = gr.Image(label="Result", show_label=False)
69
-
70
- with gr.Accordion("Advanced Settings", open=False):
71
-
72
- seed = gr.Slider(
73
- label="Seed",
74
- minimum=0,
75
- maximum=MAX_SEED,
76
- step=1,
77
- value=0,
78
- )
79
-
80
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
81
-
82
- with gr.Row():
83
-
84
- width = gr.Slider(
85
- label="Width",
86
- minimum=256,
87
- maximum=MAX_IMAGE_SIZE,
88
- step=32,
89
- value=1024,
90
- )
91
-
92
- height = gr.Slider(
93
- label="Height",
94
- minimum=256,
95
- maximum=MAX_IMAGE_SIZE,
96
- step=32,
97
- value=1024,
98
- )
99
-
100
- with gr.Row():
101
-
102
- guidance_scale = gr.Slider(
103
- label="Guidance Scale",
104
- minimum=1,
105
- maximum=15,
106
- step=0.1,
107
- value=3.5,
108
- )
109
-
110
- gr.Examples(
111
- examples = examples,
112
- fn = infer,
113
- inputs = [prompt],
114
- outputs = [result, seed],
115
- cache_examples="lazy"
116
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
  gr.on(
119
- triggers=[run_button.click, prompt.submit],
120
- fn = infer,
121
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
122
- outputs = [result, seed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  )
124
 
125
- demo.launch()
 
 
 
 
 
1
  import spaces
2
+ import gradio as gr
3
  import torch
4
+ from PIL import Image
5
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
6
+ import random
7
+ import uuid
8
+ from typing import Tuple, Union, List, Optional, Any, Dict
9
+ import numpy as np
10
+ import time
11
+ import zipfile
12
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
13
 
14
+ # Description for the app
15
+ DESCRIPTION = """## flux realism hpc/."""
16
+
17
+ # Helper functions
18
+ def save_image(img):
19
+ unique_name = str(uuid.uuid4()) + ".png"
20
+ img.save(unique_name)
21
+ return unique_name
22
 
23
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
24
+ if randomize_seed:
25
+ seed = random.randint(0, MAX_SEED)
26
+ return seed
27
 
28
  MAX_SEED = np.iinfo(np.int32).max
29
  MAX_IMAGE_SIZE = 2048
30
 
31
+ # Load pipelines for both models
32
+ # Flux.1-dev-realism
33
+ base_model_dev = "black-forest-labs/FLUX.1-dev"
34
+ pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
35
+ lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
36
+ trigger_word = "Super Realism"
37
+ pipe_dev.load_lora_weights(lora_repo)
38
+ pipe_dev.to("cuda")
39
+
40
+ # Flux.1-krea
41
+ dtype = torch.bfloat16
42
+ device = "cuda" if torch.cuda.is_available() else "cpu"
43
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
44
+ good_vae = AutoencoderKL.from_pretrained("prithivMLmods/Flux.1-krea-Merge-Transformer", subfolder="vae", torch_dtype=dtype).to(device)
45
+ pipe_krea = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-krea-Merge-Transformer", torch_dtype=dtype, vae=taef1).to(device)
46
+
47
+ # Define the flux_pipe_call_that_returns_an_iterable_of_images for flux.1-krea
48
+ @torch.inference_mode()
49
+ def flux_pipe_call_that_returns_an_iterable_of_images(
50
+ self,
51
+ prompt: Union[str, List[str]] = None,
52
+ prompt_2: Optional[Union[str, List[str]]] = None,
53
+ height: Optional[int] = None,
54
+ width: Optional[int] = None,
55
+ num_inference_steps: int = 28,
56
+ timesteps: List[int] = None,
57
+ guidance_scale: float = 3.5,
58
+ num_images_per_prompt: Optional[int] = 1,
59
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
60
+ latents: Optional[torch.FloatTensor] = None,
61
+ prompt_embeds: Optional[torch.FloatTensor] = None,
62
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
63
+ output_type: Optional[str] = "pil",
64
+ return_dict: bool = True,
65
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
66
+ max_sequence_length: int = 512,
67
+ good_vae: Optional[Any] = None,
68
+ ):
69
+ height = height or self.default_sample_size * self.vae_scale_factor
70
+ width = width or self.default_sample_size * self.vae_scale_factor
71
+
72
+ self.check_inputs(
73
+ prompt,
74
+ prompt_2,
75
+ height,
76
+ width,
77
+ prompt_embeds=prompt_embeds,
78
+ pooled_prompt_embeds=pooled_prompt_embeds,
79
+ max_sequence_length=max_sequence_length,
80
+ )
81
+
82
+ self._guidance_scale = guidance_scale
83
+ self._joint_attention_kwargs = joint_attention_kwargs
84
+ self._interrupt = False
85
+
86
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
87
+ device = self._execution_device
88
+
89
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
90
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
91
+ prompt=prompt,
92
+ prompt_2=prompt_2,
93
+ prompt_embeds=prompt_embeds,
94
+ pooled_prompt_embeds=pooled_prompt_embeds,
95
+ device=device,
96
+ num_images_per_prompt=num_images_per_prompt,
97
+ max_sequence_length=max_sequence_length,
98
+ lora_scale=lora_scale,
99
+ )
100
+
101
+ num_channels_latents = self.transformer.config.in_channels // 4
102
+ latents, latent_image_ids = self.prepare_latents(
103
+ batch_size * num_images_per_prompt,
104
+ num_channels_latents,
105
+ height,
106
+ width,
107
+ prompt_embeds.dtype,
108
+ device,
109
+ generator,
110
+ latents,
111
+ )
112
+
113
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
114
+ image_seq_len = latents.shape[1]
115
+ mu = calculate_shift(
116
+ image_seq_len,
117
+ self.scheduler.config.base_image_seq_len,
118
+ self.scheduler.config.max_image_seq_len,
119
+ self.scheduler.config.base_shift,
120
+ self.scheduler.config.max_shift,
121
+ )
122
+ timesteps, num_inference_steps = retrieve_timesteps(
123
+ self.scheduler,
124
+ num_inference_steps,
125
+ device,
126
+ timesteps,
127
+ sigmas,
128
+ mu=mu,
129
+ )
130
+ self._num_timesteps = len(timesteps)
131
+
132
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
133
+
134
+ for i, t in enumerate(timesteps):
135
+ if self.interrupt:
136
+ continue
137
+
138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
+
140
+ noise_pred = self.transformer(
141
+ hidden_states=latents,
142
+ timestep=timestep / 1000,
143
+ guidance=guidance,
144
+ pooled_projections=pooled_prompt_embeds,
145
+ encoder_hidden_states=prompt_embeds,
146
+ txt_ids=text_ids,
147
+ img_ids=latent_image_ids,
148
+ joint_attention_kwargs=self.joint_attention_kwargs,
149
+ return_dict=False,
150
+ )[0]
151
+
152
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
+
157
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
158
+ torch.cuda.empty_cache()
159
+
160
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
161
+ latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
162
+ image = good_vae.decode(latents, return_dict=False)[0]
163
+ self.maybe_free_model_hooks()
164
+ torch.cuda.empty_cache()
165
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
166
+
167
+ pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
168
+
169
+ # Helper functions for flux.1-krea
170
+ def calculate_shift(
171
+ image_seq_len,
172
+ base_seq_len: int = 256,
173
+ max_seq_len: int = 4096,
174
+ base_shift: float = 0.5,
175
+ max_shift: float = 1.16,
176
+ ):
177
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
178
+ b = base_shift - m * base_seq_len
179
+ mu = image_seq_len * m + b
180
+ return mu
181
+
182
+ def retrieve_timesteps(
183
+ scheduler,
184
+ num_inference_steps: Optional[int] = None,
185
+ device: Optional[Union[str, torch.device]] = None,
186
+ timesteps: Optional[List[int]] = None,
187
+ sigmas: Optional[List[float]] = None,
188
+ **kwargs,
189
+ ):
190
+ if timesteps is not None and sigmas is not None:
191
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
192
+ if timesteps is not None:
193
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
194
+ timesteps = scheduler.timesteps
195
+ num_inference_steps = len(timesteps)
196
+ elif sigmas is not None:
197
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
198
+ timesteps = scheduler.timesteps
199
+ num_inference_steps = len(timesteps)
200
+ else:
201
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
202
+ timesteps = scheduler.timesteps
203
+ return timesteps, num_inference_steps
204
+
205
+ # Styles for flux.1-dev-realism
206
+ style_list = [
207
+ {"name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
208
+ {"name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
209
+ {"name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
210
+ {"name": "Style Zero", "prompt": "{prompt}", "negative_prompt": ""},
211
+ ]
212
+
213
+ styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
214
+ DEFAULT_STYLE_NAME = "3840 x 2160"
215
+ STYLE_NAMES = list(styles.keys())
216
+
217
+ def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
218
+ p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
219
+ return p.replace("{prompt}", positive), n
220
+
221
+ # Generation function for flux.1-dev-realism
222
+ @spaces.GPU
223
+ def generate_dev(
224
+ prompt: str,
225
+ negative_prompt: str = "",
226
+ use_negative_prompt: bool = False,
227
+ seed: int = 0,
228
+ width: int = 1024,
229
+ height: int = 1024,
230
+ guidance_scale: float = 3,
231
+ randomize_seed: bool = False,
232
+ style_name: str = DEFAULT_STYLE_NAME,
233
+ num_inference_steps: int = 30,
234
+ num_images: int = 1,
235
+ zip_images: bool = False,
236
+ progress=gr.Progress(track_tqdm=True),
237
+ ):
238
+ positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
239
+
240
+ if use_negative_prompt:
241
+ final_negative_prompt = style_negative_prompt + " " + negative_prompt
242
+ else:
243
+ final_negative_prompt = style_negative_prompt
244
+
245
+ final_negative_prompt = final_negative_prompt.strip()
246
+
247
+ if trigger_word:
248
+ positive_prompt = f"{trigger_word} {positive_prompt}"
249
+
250
+ seed = int(randomize_seed_fn(seed, randomize_seed))
251
+ generator = torch.Generator(device="cuda").manual_seed(seed)
252
+
253
+ start_time = time.time()
254
+
255
+ images = pipe_dev(
256
+ prompt=positive_prompt,
257
+ negative_prompt=final_negative_prompt if final_negative_prompt else None,
258
+ width=width,
259
+ height=height,
260
+ guidance_scale=guidance_scale,
261
+ num_inference_steps=num_inference_steps,
262
+ num_images_per_prompt=num_images,
263
+ generator=generator,
264
+ output_type="pil",
265
+ ).images
266
+
267
+ end_time = time.time()
268
+ duration = end_time - start_time
269
+
270
+ image_paths = [save_image(img) for img in images]
271
+
272
+ zip_path = None
273
+ if zip_images:
274
+ zip_name = str(uuid.uuid4()) + ".zip"
275
+ with zipfile.ZipFile(zip_name, 'w') as zipf:
276
+ for i, img_path in enumerate(image_paths):
277
+ zipf.write(img_path, arcname=f"Img_{i}.png")
278
+ zip_path = zip_name
279
+
280
+ return image_paths, seed, f"{duration:.2f}", zip_path
281
+
282
+ # Generation function for flux.1-krea
283
+ @spaces.GPU
284
+ def generate_krea(
285
+ prompt: str,
286
+ seed: int = 0,
287
+ width: int = 1024,
288
+ height: int = 1024,
289
+ guidance_scale: float = 4.5,
290
+ randomize_seed: bool = False,
291
+ num_inference_steps: int = 28,
292
+ num_images: int = 1,
293
+ zip_images: bool = False,
294
+ progress=gr.Progress(track_tqdm=True),
295
+ ):
296
  if randomize_seed:
297
  seed = random.randint(0, MAX_SEED)
298
  generator = torch.Generator().manual_seed(seed)
299
+
300
+ start_time = time.time()
301
+
302
+ images = []
303
+ for _ in range(num_images):
304
+ final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
305
+ prompt=prompt,
306
+ guidance_scale=guidance_scale,
307
+ num_inference_steps=num_inference_steps,
308
+ width=width,
309
+ height=height,
310
+ generator=generator,
311
+ output_type="pil",
312
+ good_vae=good_vae,
313
+ ))[-1] # Take the final image only
314
+ images.append(final_img)
315
+
316
+ end_time = time.time()
317
+ duration = end_time - start_time
318
+
319
+ image_paths = [save_image(img) for img in images]
320
+
321
+ zip_path = None
322
+ if zip_images:
323
+ zip_name = str(uuid.uuid4()) + ".zip"
324
+ with zipfile.ZipFile(zip_name, 'w') as zipf:
325
+ for i, img_path in enumerate(image_paths):
326
+ zipf.write(img_path, arcname=f"Img_{i}.png")
327
+ zip_path = zip_name
328
+
329
+ return image_paths, seed, f"{duration:.2f}", zip_path
330
+
331
+ # Main generation function to handle model choice
332
+ @spaces.GPU
333
+ def generate(
334
+ model_choice: str,
335
+ prompt: str,
336
+ negative_prompt: str = "",
337
+ use_negative_prompt: bool = False,
338
+ seed: int = 0,
339
+ width: int = 1024,
340
+ height: int = 1024,
341
+ guidance_scale: float = 3,
342
+ randomize_seed: bool = False,
343
+ style_name: str = DEFAULT_STYLE_NAME,
344
+ num_inference_steps: int = 30,
345
+ num_images: int = 1,
346
+ zip_images: bool = False,
347
+ progress=gr.Progress(track_tqdm=True),
348
+ ):
349
+ if model_choice == "flux.1-dev-realism":
350
+ return generate_dev(
351
+ prompt=prompt,
352
+ negative_prompt=negative_prompt,
353
+ use_negative_prompt=use_negative_prompt,
354
+ seed=seed,
355
+ width=width,
356
+ height=height,
357
+ guidance_scale=guidance_scale,
358
+ randomize_seed=randomize_seed,
359
+ style_name=style_name,
360
+ num_inference_steps=num_inference_steps,
361
+ num_images=num_images,
362
+ zip_images=zip_images,
363
+ progress=progress,
364
+ )
365
+ elif model_choice == "flux.1-krea-dev":
366
+ return generate_krea(
367
+ prompt=prompt,
368
+ seed=seed,
369
+ width=width,
370
+ height=height,
371
+ guidance_scale=guidance_scale,
372
+ randomize_seed=randomize_seed,
373
+ num_inference_steps=num_inference_steps,
374
+ num_images=num_images,
375
+ zip_images=zip_images,
376
+ progress=progress,
377
+ )
378
+ else:
379
+ raise ValueError("Invalid model choice")
380
+
381
+ # Examples (tailored for flux.1-dev-realism)
382
  examples = [
383
+ "An attractive young woman with blue eyes lying face down on the bed, in the style of animated gifs, light white and light amber, jagged edges, the snapshot aesthetic, timeless beauty, goosepunk, sunrays shine upon it --no freckles --chaos 65 --ar 1:2 --profile yruxpc2 --stylize 750 --v 6.1",
384
+ "Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
385
+ "Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights.",
386
+ "High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250"
387
  ]
388
 
389
+ css = '''
390
+ .gradio-container {
391
+ max-width: 590px !important;
392
+ margin: 0 auto !important;
393
+ }
394
+ h1 {
395
+ text-align: center;
396
  }
397
+ footer {
398
+ visibility: hidden;
399
+ }
400
+ '''
401
 
402
+ # Gradio interface
403
+ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
404
+ gr.Markdown(DESCRIPTION)
405
+ with gr.Row():
406
+ prompt = gr.Text(
407
+ label="Prompt",
408
+ show_label=False,
409
+ max_lines=1,
410
+ placeholder="Enter your prompt",
411
+ container=False,
412
+ )
413
+ run_button = gr.Button("Run", scale=0, variant="primary")
414
+ result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
415
 
416
+ with gr.Row():
417
+ # Model choice radio button above additional options
418
+ model_choice = gr.Radio(
419
+ choices=["flux.1-krea-dev", "flux.1-dev-realism"],
420
+ label="Select Model",
421
+ value="flux.1-krea-dev"
422
+ )
423
+
424
+ with gr.Accordion("Additional Options", open=False):
425
+ style_selection = gr.Dropdown(
426
+ label="Quality Style (for flux.1-dev-realism only)",
427
+ choices=STYLE_NAMES,
428
+ value=DEFAULT_STYLE_NAME,
429
+ interactive=True,
430
+ )
431
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
432
+ negative_prompt = gr.Text(
433
+ label="Negative prompt",
434
+ max_lines=1,
435
+ placeholder="Enter a negative prompt",
436
+ visible=False,
437
+ )
438
+ seed = gr.Slider(
439
+ label="Seed",
440
+ minimum=0,
441
+ maximum=MAX_SEED,
442
+ step=1,
443
+ value=0,
444
+ )
445
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
446
  with gr.Row():
447
+ width = gr.Slider(
448
+ label="Width",
449
+ minimum=512,
450
+ maximum=2048,
451
+ step=64,
452
+ value=1024,
 
453
  )
454
+ height = gr.Slider(
455
+ label="Height",
456
+ minimum=512,
457
+ maximum=2048,
458
+ step=64,
459
+ value=1024,
460
+ )
461
+ guidance_scale = gr.Slider(
462
+ label="Guidance Scale",
463
+ minimum=0.1,
464
+ maximum=20.0,
465
+ step=0.1,
466
+ value=4.5,
467
+ )
468
  num_inference_steps = gr.Slider(
469
  label="Number of inference steps",
470
  minimum=1,
471
+ maximum=40,
472
  step=1,
473
+ value=28,
474
  )
475
+ num_images = gr.Slider(
476
+ label="Number of images",
477
+ minimum=1,
478
+ maximum=5,
479
+ step=1,
480
+ value=1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481
  )
482
+ zip_images = gr.Checkbox(label="Zip generated images", value=False)
483
+
484
+ gr.Markdown("### Output Information")
485
+ seed_display = gr.Textbox(label="Seed used", interactive=False)
486
+ generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
487
+ zip_file = gr.File(label="Download ZIP")
488
+
489
+ gr.Examples(
490
+ examples=examples,
491
+ inputs=prompt,
492
+ outputs=[result, seed_display, generation_time, zip_file],
493
+ fn=generate,
494
+ cache_examples=False,
495
+ )
496
+
497
+ use_negative_prompt.change(
498
+ fn=lambda x: gr.update(visible=x),
499
+ inputs=use_negative_prompt,
500
+ outputs=negative_prompt,
501
+ api_name=False,
502
+ )
503
 
504
  gr.on(
505
+ triggers=[
506
+ prompt.submit,
507
+ run_button.click,
508
+ ],
509
+ fn=generate,
510
+ inputs=[
511
+ model_choice,
512
+ prompt,
513
+ negative_prompt,
514
+ use_negative_prompt,
515
+ seed,
516
+ width,
517
+ height,
518
+ guidance_scale,
519
+ randomize_seed,
520
+ style_selection,
521
+ num_inference_steps,
522
+ num_images,
523
+ zip_images,
524
+ ],
525
+ outputs=[result, seed_display, generation_time, zip_file],
526
+ api_name="run",
527
  )
528
 
529
+ if __name__ == "__main__":
530
+ demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)