Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| import copy | |
| import math | |
| import time | |
| import random | |
| import logging | |
| import numpy as np | |
| from typing import Any, Dict, List, Optional, Union | |
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| import spaces | |
| from diffusers import ( | |
| DiffusionPipeline, | |
| FlowMatchEulerDiscreteScheduler) | |
| from huggingface_hub import ( | |
| hf_hub_download, | |
| HfFileSystem, | |
| ModelCard, | |
| snapshot_download) | |
| from diffusers.utils import load_image | |
| import requests | |
| from urllib.parse import urlparse | |
| import tempfile | |
| import shutil | |
| import uuid | |
| import zipfile | |
| # META: CUDA_CHECK / GPU_INFO | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| loras = [ | |
| # Sample Qwen-compatible LoRAs | |
| { | |
| "image": "https://huggingface.co/damnthatai/Game_Boy_Camera_Pixel_Style_Qwen/resolve/main/images/20250818090201_Qwen8s_00001_.jpg", | |
| "title": "Camera Pixel Style", | |
| "repo": "damnthatai/Game_Boy_Camera_Pixel_Style_Qwen", | |
| "weights": "g4m3b0yc4m3r4_qwen.safetensors", | |
| "trigger_word": "g4m3b0yc4m3r4, grayscale, pixel photo" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png", | |
| "title": "Studio Realism", | |
| "repo": "prithivMLmods/Qwen-Image-Studio-Realism", | |
| "weights": "qwen-studio-realism.safetensors", | |
| "trigger_word": "Studio Realism" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png", | |
| "title": "Sketch Smudge", | |
| "repo": "prithivMLmods/Qwen-Image-Sketch-Smudge", | |
| "weights": "qwen-sketch-smudge.safetensors", | |
| "trigger_word": "Sketch Smudge" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png", | |
| "title": "Qwen Anime", | |
| "repo": "prithivMLmods/Qwen-Image-Anime-LoRA", | |
| "weights": "qwen-anime.safetensors", | |
| "trigger_word": "Qwen Anime" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png", | |
| "title": "Fragmented Portraiture", | |
| "repo": "prithivMLmods/Qwen-Image-Fragmented-Portraiture", | |
| "weights": "qwen-fragmented-portraiture.safetensors", | |
| "trigger_word": "Fragmented Portraiture" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png", | |
| "title": "Synthetic Face", | |
| "repo": "prithivMLmods/Qwen-Image-Synthetic-Face", | |
| "weights": "qwen-synthetic-face.safetensors", | |
| "trigger_word": "Synthetic Face" | |
| }, | |
| { | |
| "image": "https://huggingface.co/Tomechi02/Macne_style_enahncer/resolve/main/images/pixai-1913880604374308947-2.png", | |
| "title": "Macne Style Enahncer", | |
| "repo": "Tomechi02/Macne_style_enahncer", | |
| "weights": "Macne_Style_enhancer.safetensors", | |
| "trigger_word": "macloid, gomoku" | |
| }, | |
| { | |
| "image": "https://huggingface.co/itspoidaman/qwenglitch/resolve/main/images/GyZTwJIbkAAhS4h.jpeg", | |
| "title": "Qwen Glitch", | |
| "repo": "itspoidaman/qwenglitch", | |
| "weights": "qwenglitch1.safetensors", | |
| "trigger_word": "qwenglitch" | |
| }, | |
| { | |
| "image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg", | |
| "title": "Modern Anime Lora", | |
| "repo": "alfredplpl/qwen-image-modern-anime-lora", | |
| "weights": "lora.safetensors", | |
| "trigger_word": "Japanese modern anime style" | |
| }, | |
| { | |
| "image": "https://huggingface.co/damnthatai/Apple_QuickTake_150_Digital_Camera_Qwen/resolve/main/images/20250817084713_Qwen.jpg", | |
| "title": "Apple QuickTake 150 Digital Camera", | |
| "repo": "damnthatai/Apple_QuickTake_150_Digital_Camera_Qwen", | |
| "weights": "quicktake150style_qwen.safetensors", | |
| "trigger_word": "quicktake150style" | |
| }, | |
| ] | |
| # Initialize the base model | |
| dtype = torch.bfloat16 | |
| base_model = "Qwen/Qwen-Image" | |
| # Scheduler configuration from the Qwen-Image-Lightning repository | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(3), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| pipe = DiffusionPipeline.from_pretrained( | |
| base_model, scheduler=scheduler, torch_dtype=dtype | |
| ).to(device) | |
| # Lightning LoRA info (no global state) | |
| LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning" | |
| LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| class Timer: | |
| def __init__(self, task_name=""): | |
| self.task_name = task_name | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self.end_time = time.time() | |
| self.elapsed_time = self.end_time - self.start_time | |
| if self.task_name: | |
| print(f"Elapsed time for {self.task_name}: {self.elapsed_time:.6f} seconds") | |
| else: | |
| print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
| def compute_image_dimensions(aspect_ratio): | |
| """Converts aspect ratio string to width, height tuple.""" | |
| if aspect_ratio == "1:1": | |
| return 1024, 1024 | |
| elif aspect_ratio == "16:9": | |
| return 1152, 640 | |
| elif aspect_ratio == "9:16": | |
| return 640, 1152 | |
| elif aspect_ratio == "4:3": | |
| return 1024, 768 | |
| elif aspect_ratio == "3:4": | |
| return 768, 1024 | |
| elif aspect_ratio == "3:2": | |
| return 1024, 688 | |
| elif aspect_ratio == "2:3": | |
| return 688, 1024 | |
| else: | |
| return 1024, 1024 | |
| def handle_lora_selection(evt: gr.SelectData, aspect_ratio): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" | |
| # Update aspect ratio if specified in LoRA config | |
| if "aspect" in selected_lora: | |
| if selected_lora["aspect"] == "portrait": | |
| aspect_ratio = "9:16" | |
| elif selected_lora["aspect"] == "landscape": | |
| aspect_ratio = "16:9" | |
| else: | |
| aspect_ratio = "1:1" | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index, | |
| aspect_ratio, | |
| ) | |
| def adjust_generation_mode(speed_mode): | |
| """Update UI based on speed/quality toggle.""" | |
| if speed_mode == "Fast (8 steps)": | |
| return gr.update(value="Fast mode selected - 8 steps with Lightning LoRA"), 8, 1.0 | |
| else: | |
| return gr.update(value="Base mode selected - 48 steps for best quality"), 48, 4.0 | |
| def create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""): | |
| pipe.to("cuda") | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| with Timer("Generating image"): | |
| # Generate image | |
| image = pipe( | |
| prompt=prompt_mash, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=steps, | |
| true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| return image | |
| def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)): | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.") | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| # Prepare prompt with trigger word | |
| if trigger_word: | |
| if "trigger_position" in selected_lora: | |
| if selected_lora["trigger_position"] == "prepend": | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = f"{prompt} {trigger_word}" | |
| else: | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = prompt | |
| # Always unload any existing LoRAs first to avoid conflicts | |
| with Timer("Unloading existing LoRAs"): | |
| pipe.unload_lora_weights() | |
| # Load LoRAs based on speed mode | |
| if speed_mode == "Fast (8 steps)": | |
| with Timer("Loading Lightning LoRA and style LoRA"): | |
| # Load Lightning LoRA first | |
| pipe.load_lora_weights( | |
| LIGHTNING_LORA_REPO, | |
| weight_name=LIGHTNING_LORA_WEIGHT, | |
| adapter_name="lightning" | |
| ) | |
| # Load the selected style LoRA | |
| weight_name = selected_lora.get("weights", None) | |
| pipe.load_lora_weights( | |
| lora_path, | |
| weight_name=weight_name, | |
| low_cpu_mem_usage=True, | |
| adapter_name="style" | |
| ) | |
| # Set both adapters active with their weights | |
| pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale]) | |
| else: | |
| # Quality mode - only load the style LoRA | |
| with Timer(f"Loading LoRA weights for {selected_lora['title']}"): | |
| weight_name = selected_lora.get("weights", None) | |
| pipe.load_lora_weights( | |
| lora_path, | |
| weight_name=weight_name, | |
| low_cpu_mem_usage=True, | |
| adapter_name="style" | |
| ) | |
| pipe.set_adapters(["style"], adapter_weights=[lora_scale]) | |
| # Set random seed for reproducibility | |
| with Timer("Randomizing seed"): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Get image dimensions from aspect ratio | |
| width, height = compute_image_dimensions(aspect_ratio) | |
| # Generate the image | |
| final_image = create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale) | |
| return final_image, seed | |
| def fetch_hf_adapter_files(link): | |
| split_link = link.split("/") | |
| if len(split_link) != 2: | |
| raise Exception("Invalid Hugging Face repository link format.") | |
| print(f"Repository attempted: {split_link}") | |
| # Load model card | |
| model_card = ModelCard.load(link) | |
| base_model = model_card.data.get("base_model") | |
| print(f"Base model: {base_model}") | |
| # Validate model type (for Qwen-Image) | |
| acceptable_models = {"Qwen/Qwen-Image"} | |
| models_to_check = base_model if isinstance(base_model, list) else [base_model] | |
| if not any(model in acceptable_models for model in models_to_check): | |
| raise Exception("Not a Qwen-Image LoRA!") | |
| # Extract image and trigger word | |
| image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
| trigger_word = model_card.data.get("instance_prompt", "") | |
| image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None | |
| # Initialize Hugging Face file system | |
| fs = HfFileSystem() | |
| try: | |
| list_of_files = fs.ls(link, detail=False) | |
| # Find safetensors file | |
| safetensors_name = None | |
| for file in list_of_files: | |
| filename = file.split("/")[-1] | |
| if filename.endswith(".safetensors"): | |
| safetensors_name = filename | |
| break | |
| if not safetensors_name: | |
| raise Exception("No valid *.safetensors file found in the repository.") | |
| except Exception as e: | |
| print(e) | |
| raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA") | |
| return split_link[1], link, safetensors_name, trigger_word, image_url | |
| def validate_custom_adapter(link): | |
| print(f"Checking a custom model on: {link}") | |
| if link.endswith('.safetensors'): | |
| if 'huggingface.co' in link: | |
| parts = link.split('/') | |
| try: | |
| hf_index = parts.index('huggingface.co') | |
| username = parts[hf_index + 1] | |
| repo_name = parts[hf_index + 2] | |
| repo = f"{username}/{repo_name}" | |
| safetensors_name = parts[-1] | |
| try: | |
| model_card = ModelCard.load(repo) | |
| trigger_word = model_card.data.get("instance_prompt", "") | |
| image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
| image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None | |
| except: | |
| trigger_word = "" | |
| image_url = None | |
| return repo_name, repo, safetensors_name, trigger_word, image_url | |
| except: | |
| raise Exception("Invalid safetensors URL format") | |
| if link.startswith("https://"): | |
| if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): | |
| link_split = link.split("huggingface.co/") | |
| return fetch_hf_adapter_files(link_split[1]) | |
| else: | |
| return fetch_hf_adapter_files(link) | |
| def incorporate_custom_adapter(custom_lora): | |
| global loras | |
| if custom_lora: | |
| try: | |
| title, repo, path, trigger_word, image = validate_custom_adapter(custom_lora) | |
| print(f"Loaded custom LoRA: {repo}") | |
| card = f''' | |
| <div class="custom_lora_card"> | |
| <span>Loaded custom LoRA:</span> | |
| <div class="card_internal"> | |
| <img src="{image}" /> | |
| <div> | |
| <h3>{title}</h3> | |
| <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> | |
| </div> | |
| </div> | |
| </div> | |
| ''' | |
| existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) | |
| if existing_item_index is None: | |
| new_item = { | |
| "image": image, | |
| "title": title, | |
| "repo": repo, | |
| "weights": path, | |
| "trigger_word": trigger_word | |
| } | |
| print(new_item) | |
| loras.append(new_item) | |
| existing_item_index = len(loras) - 1 # Get the actual index after adding | |
| return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word | |
| except Exception as e: | |
| gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}") | |
| return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, "" | |
| else: | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| def discard_custom_adapter(): | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| process_adapter_generation.zerogpu = True | |
| css = ''' | |
| #gen_btn{height: 100%} | |
| #gen_column{align-self: stretch} | |
| #title{text-align: center} | |
| #title h1{font-size: 3em; display:inline-flex; align-items:center} | |
| #title img{width: 100px; margin-right: 0.5em} | |
| #gallery .grid-wrap{height: 10vh} | |
| #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} | |
| .card_internal{display: flex;height: 100px;margin-top: .5em} | |
| .card_internal img{margin-right: 1em} | |
| .styler{--form-gap-width: 0px !important} | |
| #speed_status{padding: .5em; border-radius: 5px; margin: 1em 0} | |
| ''' | |
| with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app: | |
| title = gr.HTML("""<h1>Qwen Image LoRA DLC⛵</h1>""", elem_id="title") | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder="✦︎ Choose the LoRA and type the prompt") | |
| with gr.Column(scale=1, elem_id="gen_column"): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA Gallery", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery", | |
| show_share_button=False | |
| ) | |
| with gr.Group(): | |
| custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/lora-model-name") | |
| gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list") | |
| custom_lora_info = gr.HTML(visible=False) | |
| custom_lora_button = gr.Button("Remove custom LoRA", visible=False) | |
| with gr.Column(): | |
| result = gr.Image(label="Generated Image") | |
| with gr.Row(): | |
| aspect_ratio = gr.Dropdown( | |
| label="Aspect Ratio", | |
| choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"], | |
| value="1:1" | |
| ) | |
| with gr.Row(): | |
| speed_mode = gr.Dropdown( | |
| label="Output Mode", | |
| choices=["Fast (8 steps)", "Base (48 steps)"], | |
| value="Base (48 steps)", | |
| ) | |
| speed_status = gr.Markdown("Base mode selected", elem_id="speed_status") | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider( | |
| label="Guidance Scale (True CFG)", | |
| minimum=1.0, | |
| maximum=5.0, | |
| step=0.1, | |
| value=4.0, | |
| info="Lower for speed mode, higher for quality" | |
| ) | |
| steps = gr.Slider( | |
| label="Steps", | |
| minimum=4, | |
| maximum=50, | |
| step=1, | |
| value=48, | |
| info="Automatically set by speed mode" | |
| ) | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0) | |
| # Event handlers | |
| gallery.select( | |
| handle_lora_selection, | |
| inputs=[aspect_ratio], | |
| outputs=[prompt, selected_info, selected_index, aspect_ratio] | |
| ) | |
| speed_mode.change( | |
| adjust_generation_mode, | |
| inputs=[speed_mode], | |
| outputs=[speed_status, steps, cfg_scale] | |
| ) | |
| custom_lora.input( | |
| incorporate_custom_adapter, | |
| inputs=[custom_lora], | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] | |
| ) | |
| custom_lora_button.click( | |
| discard_custom_adapter, | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=process_adapter_generation, | |
| inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode], | |
| outputs=[result, seed] | |
| ) | |
| app.queue() | |
| app.launch(share=False, ssr_mode=False, show_error=True) |