File size: 20,263 Bytes
5a70430
 
 
 
 
 
 
 
ee5186b
 
5a70430
 
ee5186b
5a70430
 
 
 
 
 
ee5186b
 
 
 
5a70430
 
ee5186b
5a70430
 
 
 
 
 
 
 
 
 
 
ee5186b
 
 
 
 
 
 
 
 
 
 
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5186b
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca1c98
5a70430
 
 
 
 
 
 
 
ee5186b
5a70430
 
ee5186b
5a70430
 
ee5186b
5a70430
ee5186b
5a70430
 
 
 
 
 
 
ee5186b
 
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5186b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a70430
 
 
 
 
ee5186b
5a70430
 
 
 
 
 
 
 
 
 
ee5186b
5a70430
 
 
 
 
 
 
 
 
 
 
 
ee5186b
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5186b
 
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5186b
 
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5186b
 
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5186b
 
5a70430
 
 
ee5186b
 
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5186b
5a70430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5186b
 
 
 
 
 
 
 
 
 
 
 
5a70430
 
 
 
ee5186b
 
5a70430
 
 
 
 
 
 
 
 
 
ee5186b
 
5a70430
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import os
import json
import copy
import time
import random
import logging
import numpy as np
from typing import Any, Dict, List, Optional, Union
import torch
from PIL import Image
import gradio as gr
import spaces
from diffusers import DiffusionPipeline
from huggingface_hub import (
    hf_hub_download,
    HfFileSystem,
    ModelCard,
    snapshot_download)
from diffusers.utils import load_image
import requests
from urllib.parse import urlparse
import tempfile
import shutil
import uuid
import zipfile

def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

# Qwen Image pipeline with live preview capability
@torch.inference_mode()
def qwen_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 50,
    guidance_scale: float = 4.0,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    output_type: Optional[str] = "pil",
):
    height = height or 1024
    width = width or 1024
    
    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device
    
    # Generate intermediate images during the process
    for i in range(num_inference_steps):
        if i % 5 == 0:  # Show progress every 5 steps
            # Generate partial result
            temp_result = self(
                prompt=prompt,
                negative_prompt=negative_prompt,
                height=height,
                width=width,
                guidance_scale=guidance_scale,
                num_inference_steps=max(1, i + 1),
                num_images_per_prompt=num_images_per_prompt,
                generator=generator,
                output_type=output_type,
            ).images[0]
            yield temp_result
            torch.cuda.empty_cache()
    
    # Final high-quality result
    final_result = self(
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images_per_prompt,
        generator=generator,
        output_type=output_type,
    ).images[0]
    
    yield final_result

loras = [
    # Sample Qwen-compatible LoRAs
    {
        "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png",
        "title": "Studio Realism",
        "repo": "prithivMLmods/Qwen-Image-Studio-Realism",
        "weights": "qwen-studio-realism.safetensors",
        "trigger_word": "Studio Realism"
    },
    {
        "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png",
        "title": "Sketch Smudge",
        "repo": "prithivMLmods/Qwen-Image-Sketch-Smudge",
        "weights": "qwen-sketch-smudge.safetensors",
        "trigger_word": "Sketch Smudge"
    },
    {
        "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png",
        "title": "Qwen Anime",
        "repo": "prithivMLmods/Qwen-Image-Anime-LoRA",
        "weights": "qwen-anime.safetensors",
        "trigger_word": "Qwen Anime"
    },
    {
        "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png",
        "title": "Synthetic Face",
        "repo": "prithivMLmods/Qwen-Image-Synthetic-Face",
        "weights": "qwen-synthetic-face.safetensors",
        "trigger_word": "Synthetic Face"
    },
    {
        "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png",
        "title": "Fragmented Portraiture",
        "repo": "prithivMLmods/Qwen-Image-Fragmented-Portraiture",
        "weights": "qwen-fragmented-portraiture.safetensors",
        "trigger_word": "Fragmented Portraiture"
    },
]

#--------------------------------------------------Model Initialization-----------------------------------------------------------------------------------------#
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "Qwen/Qwen-Image"

# Load Qwen Image pipeline
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)

# Add aspect ratios for Qwen
aspect_ratios = {
    "1:1": (1024, 1024),
    "16:9": (1344, 768),
    "9:16": (768, 1344),
    "4:3": (1152, 896),
    "3:4": (896, 1152),
    "3:2": (1216, 832),
    "2:3": (832, 1216)
}

MAX_SEED = 2**32-1

# Add the custom method to the pipeline
pipe.qwen_pipe_call_that_returns_an_iterable_of_images = qwen_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def load_lora_opt(pipe, lora_input):
    lora_input = lora_input.strip()
    if not lora_input:
        return

    # If it's just an ID like "author/model"
    if "/" in lora_input and not lora_input.startswith("http"):
        pipe.load_lora_weights(lora_input, adapter_name="default")
        return

    if lora_input.startswith("http"):
        url = lora_input
        # Repo page (no blob/resolve)
        if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
            repo_id = urlparse(url).path.strip("/")
            pipe.load_lora_weights(repo_id, adapter_name="default")
            return

        # Blob link → convert to resolve link
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")

        # Download direct file
        tmp_dir = tempfile.mkdtemp()
        local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
        try:
            print(f"Downloading LoRA from {url}...")
            resp = requests.get(url, stream=True)
            resp.raise_for_status()
            with open(local_path, "wb") as f:
                for chunk in resp.iter_content(chunk_size=8192):
                    f.write(chunk)
            print(f"Saved LoRA to {local_path}")
            pipe.load_lora_weights(local_path, adapter_name="default")
        finally:
            shutil.rmtree(tmp_dir, ignore_errors=True)

def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
    
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        else:
            width = 1024
            height = 1024
    
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU(duration=120)
def generate_image(prompt_mash, negative_prompt, steps, seed, cfg_scale, width, height, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    with calculateDuration("Generating image"):
        # Generate image with live preview
        for img in pipe.qwen_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt_mash,
            negative_prompt=negative_prompt,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
        ):
            yield img

def set_dimensions(ar):
    w, h = aspect_ratios[ar]
    return gr.update(value=w), gr.update(value=h)

@spaces.GPU(duration=120)
def run_lora(prompt, negative_prompt, use_negative_prompt, aspect_ratio, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.🧨")

    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]

    # Set dimensions based on aspect ratio
    width, height = aspect_ratios[aspect_ratio]

    if trigger_word:
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend":
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                prompt_mash = f"{prompt} {trigger_word}"
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    # Handle negative prompt
    final_negative_prompt = negative_prompt if use_negative_prompt else ""

    with calculateDuration("Unloading LoRA"):
        # Clear existing adapters
        current_adapters = pipe.get_list_adapters() if hasattr(pipe, 'get_list_adapters') else []
        for adapter in current_adapters:
            if hasattr(pipe, 'delete_adapters'):
                pipe.delete_adapters(adapter)
        if hasattr(pipe, 'disable_lora'):
            pipe.disable_lora()

    # Load new LoRA weights
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        weight_name = selected_lora.get("weights", None)
        load_lora_opt(pipe, lora_path)
        if hasattr(pipe, 'set_adapters'):
            pipe.set_adapters(["default"], adapter_weights=[lora_scale])

    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)

    image_generator = generate_image(prompt_mash, final_negative_prompt, steps, seed, cfg_scale, width, height, lora_scale, progress)

    final_image = None
    step_counter = 0
    for image in image_generator:
        step_counter += 1
        final_image = image
        progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
        yield image, seed, gr.update(value=progress_bar, visible=True)

    yield final_image, seed, gr.update(value=progress_bar, visible=False)

def get_huggingface_safetensors(link):
    split_link = link.split("/")
    if len(split_link) == 2:
        model_card = ModelCard.load(link)
        base_model = model_card.data.get("base_model")
        print(base_model)

        # Allow Qwen models
        if base_model and "qwen" not in base_model.lower():
            raise Exception("Qwen-compatible LoRA Not Found!")

        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
        
        fs = HfFileSystem()
        try:
            list_of_files = fs.ls(link, detail=False)
            for file in list_of_files:
                if file.endswith(".safetensors"):
                    safetensors_name = file.split("/")[-1]
                if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
                    image_elements = file.split("/")
                    image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
        except Exception as e:
            print(e)
            gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
            raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
        
        return split_link[1], link, safetensors_name, trigger_word, image_url

def check_custom_model(link):
    if link.startswith("https://"):
        if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    else: 
        return get_huggingface_safetensors(link)

def add_custom_lora(custom_lora):
    global loras
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
                </div>
              </div>
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if not existing_item_index:
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                existing_item_index = len(loras)
                loras.append(new_item)

            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
        except Exception as e:
            gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen compatible LoRA")
            return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen compatible LoRA"), gr.update(visible=False), gr.update(), "", None, ""
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def remove_custom_lora():
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''

with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
    title = gr.HTML("""<h1>Qwen Image LoRA DLC🥳</h1>""", elem_id="title",)
    selected_index = gr.State(None)
    
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="✦︎ Choose the LoRA and type the prompt")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")

    with gr.Row():
        with gr.Column():
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="Qwen LoRA Collection",
                allow_preview=False,
                columns=3,
                elem_id="gallery",
                show_share_button=False
            )
            
            with gr.Group():
                custom_lora = gr.Textbox(label="Enter Custom Qwen LoRA", placeholder="prithivMLmods/Qwen-Image-Sketch-Smudge")
                gr.Markdown("[Check the list of Qwen-compatible LoRAs](https://huggingface.co/models?search=qwen+lora)", elem_id="lora_list")
            
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
            
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress", visible=False)
            result = gr.Image(label="Generated Image", format="png")

            with gr.Row():
                aspect_ratio = gr.Dropdown(
                    label="Aspect Ratio",
                    choices=list(aspect_ratios.keys()),
                    value="1:1",
                )

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
                
            with gr.Row():
                use_negative_prompt = gr.Checkbox(
                    label="Use negative prompt", value=True, visible=True
                )
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    value="text, watermark, copyright, blurry, low resolution",
                    visible=True,
                )
            
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=4.0)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=50)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=2048, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=2048, step=64, value=1024)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)

    # Event handlers
    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )

    aspect_ratio.change(
        fn=set_dimensions,
        inputs=aspect_ratio,
        outputs=[width, height]
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt
    )

    custom_lora.input(
        add_custom_lora,
        inputs=[custom_lora],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
    )

    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
    )

    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, negative_prompt, use_negative_prompt, aspect_ratio, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed, progress_bar]
    )

app.queue()
app.launch(share=False, ssr_mode=False, show_error=True)